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ABSTRACT
New microscopy imaging techniques have enabled the acquisi-

tion of cellular and sub-cellular information with unprecedented ac-
curacy and specificity. Fluorescence techniques have enabled label-
ing of numerous, previously inaccessible, molecules and organelles,
while Raman spectrographic techniques, for example, have enabled
label free acquisition. Together with the development of high through-
put techniques, these technologies now allow for the acquisition of a
significant amount of information about cellular processes and have
enabled high throughput and high content screening. Beyond im-
age formation and acquisition, computational techniques comprise
an important part of the process of obtaining biological understand-
ing from such experiments. Here we review the pros and cons of
the main approaches that have been used to extract information from
digital images of cells. In addition, we also offer an overview of
modern computational techniques that beyond allowing for discrim-
ination between two hypothesis, also allow for modeling, visualiza-
tion, and understanding of biological phenomena.

Index Terms— digital microscopy, cytometry, image analysis

1. INTRODUCTION

For centuries, and dating back to the discovery of cells by Hooke
in the 1600s [1] , microscopy imaging techniques have served as
an important experimental technique for biological discovery. In
the past few decades, several technological advances have coalesced
into elaborate imaging modalities that are able to access high reso-
lution spatiatemporal information about cellular processes with un-
precedented accuracy and specificity. Fluorescence molecules can
be used to allow scientists to obtain information regarding the spatial
arrangement and organization of numerous molecules, proteins, and
organelles in live and fixed cells [2]. Combined with digital detectors
such as photomultiplier tubes (PMTs), and charge coupled devices
(CCDs), as well as intricate optical instrumentation, high resolution
digital spatiotemporal imaging in 2 and 3 dimensions became possi-
ble [3]. Confocal fluorescence techniques, for example, are routinely
used for live cell imaging experiments for a variety of applications,
including dynamic aspects of sperm cells during fertilization [4], as
well as the dynamic sub cellular localization of chlaritin during en-
docytosis [5] for examples.

In addition to providing means for visualizing the location of
different molecules and proteins inside cells, the quantitative na-
ture of photon counting detectors (PMTs, CCDs) has also given
rise to imaging techniques that enable the quantitative study of dy-
namic molecule behavior, as well as the colocalization of multiple
molecules. Fluorescence (Froster) resonance energy transfer tech-
niques, for example, have emerged as an important technique to

study changes in molecular proximity, and have been used, in con-
junction with live cell imaging techniques, to study the role of differ-
ent proteins (Rac1, Cdc42, and others) in glioblastoma cell invasion
experiments [6], for example.

In addition, an important technological contribution has been the
development of ultra fast, hight throughput, imaging methods ca-
pable of imaging and analyzing millions of particles in a relatively
short period of time [7]. These have the potential to revolutionize di-
agnoses of pathologies through rare event (single cell) detection. Fi-
nally, we mention that beyond precise quantification of cellular pro-
cesses through fluorescence techniques, techniques for label free mi-
croscopic imaging using Raman spectroscopy techniques have been
developed [8], with the major benefit that these technologies could
pave the way for in vivo imaging and diagnosis.

Given the widespread capability for acquiring high resolution
information from large quantities of images of cells, computational
tools have gained importance and are often integrated into compre-
hensive imaging ‘pipelines’ to more fully characterize the biological
processes being investigated. The purpose of this paper is to pro-
vide an overview of the main computational techniques that play
crucial roles in the field of image-based cytometry. Rather than a
comprehensive and exhaustive review, emphasis will be placed on
highlighting the main ideas in current use as well as describe impor-
tant emerging tools.

2. COMPUTATIONAL TOOLS FOR QUANTITATIVE
IMAGE-BASED CYTOMETRY

As described above, microscopic images of cells can be varied in
signal source (e.g. fluorescence vs. bright light), resolution, dimen-
sion (2D vs 3D), etc. Ultimately, however modern devices produce
digital images which are stored in computers as a collection of pixel
measurements. For large images of high spatial resolution, numer-
ous pixels are available. For most modern history, when conducting
scientific experiments based on imaging assays, microscopic images
were visually analyzed to determine the presence or absence of a
certain morphological signature in a group of cells that were sub-
jected to a specific controllable effect (e.g. drug, RNA interference,
mechanical manipulation, etc.) in comparison to control cells. The
morphological signature is normally reflected as a change (presence
or absence) of a fluorescence signal, or changes in overall shape or
appearance of the cells, in the acquired images. While the human
visual system is capable of astounding tasks, it is well known that
it has certain limits as far as precise quantification of phenomena,
comparing large numbers of morphological exemplars (cells), and
finding co variations amongst several factors [9], for example. As
well known, for a scientifically oriented person to obtain confidence
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Fig. 2. Example segmentation of nuclei in an H and E stained image.
The detected nuclei are shown with a blue (online) contour around
them.

on a certain hypothesis (e.g. is drug X effective on cell type Y?),
experiments using numerous, several thousands cells perhaps, are
required. Computational image analysis methods can thus play a
crucial role in helping scientists more categorically test and validate
hypothesis, as well as analyze more subtle or complex processes.

As far as computational imaging pipelines for cytometry, before
quantitative properties of individual cells can be analyzed, the indi-
vidual cells must first be segmented from raw digital images when
their field of view is large enough to contain many cells. Once prop-
erly segmented, certain of their properties are computed, based on
which hypothesis can be statistically assessed using pattern recogni-
tion algorithms. Figure 1 contains a schematic of a common image
cytometry pipeline.

2.1. Image segmentation

A wide variety of algorithms for segmenting cells are currently avail-
able for segmenting cells and sub cellular structures from diverse
types of microscopy images [10]. This is not a trivial task, primarily
due to the different appearance cells can have due to the variety of
existing cell types, experimental imaging assays, as well as different
microscopic imaging modalities (2D, 3D, fluorescence stains, etc.).
Algorithms targeted towards segmenting certain cell types imaged
using a particular modality tend not to perform as well for differ-
ent cell types or different signal targets or imaging modalities. To
deal with such large heterogeneity, algorithms that can automatically
(or semi automatically) ‘tune’ themselves to a given application are
poised to gain in significance. Figure 2 shows an example of such an
algorithm [11] that utilizes hand annotated data to ‘calibrate’ itself so
that it can accurately segment nuclei from cells in tissue stained with
Hematoxylin and Eosin. Note that this method, as many modern al-
gorithms, is able to accurately capture borders of individual nuclei
as well as cells in clustered environments, and can be easily adapted
(by providing annotated images) to various imaging modalities [11].

2.2. Feature-based methods for hypothesis testing

Once cells have been segmented, groups of cells can be analyzed for
differences in control versus effect experiments by calculating rel-
evant ‘features’ from each cell, and analyzing the measurements in
multi dimensional ‘feature space.’ The idea is exemplified in Figure
1. A wide variety of features have been used over the past decades
to quantify differences in shape and appearance of cells in digital

images. These can be broadly divided into features that aim to char-
acterize shape or texture. Examples of shape related features include
the perimeter and area of a cell (when measured in 2D images), as
well as average curvature, etc. Example of texture features include
Fourier and wavelet-like decompositions, Haralick texture features,
as well as others. Once numerical features are computed from two
sets (classes) of cells, the statistical significance of hypothesis (e.g.
differences of means) can be computed. In addition, other pattern
recognition tasks, such as automated classification, can also be com-
puted. Altogether, these can give the experimental scientist the nec-
essary evidence to conclude whether a significant effect has been
observed in contrast to a control population of cells.

This approach has been in use for several decades [12]. More
recently it has been used in drug discovery experiments [13], as well
in automated digital pathology [14], for examples. However, a few
limitations are apparent. First, the task of deciding which features
are relevant for a particular problem is not trivial. Algorithms for
sifting through a large number of features, and, given labeled train-
ing data, can attempt to select the most relevant features for a given
problem. In addition, a researcher who wishes to find meaning, or
biological understanding, from the feature space analysis is left with
few direct options, though indirect approaches exist [15].

2.3. Explicit modeling methods for parameter extraction

While the approach above attempts only to describe the differences
between two sets of cells, explicit parametric modeling approaches
can be used to extract biologically relevant information by fitting
the model being used to the image data available. This approach
has been used in cytometry to model cellular and nuclear shapes,
as well as other organelles [16]. Figure 3 shows how a modeling
method [17] can be used to estimate the number and lengths of mi-
crotubule from 3D confocal fluorescence images of fixed cells, even
though the size of such filaments is well below the optical resolution
limit of these instruments, and therefore, in many regions, individual
microtubules cannot be discerned by the human eye. Naturally, as
all measurements from noisy data, these have errors associated with
them. However, these errors have been well characterized and have
found not to interfere with ones ability to obtain useful information
from experiments involving real cells.

2.4. Implicit modeling for understanding and visualization

An emerging manner through which to mine information from sets
of images of cells utilizes mathematical distances that measure the
similarity between two or more images directly without the aid of
pre conceived numerical features, nor physiological models. The
advantage of such methods is that the can be more impartial to pre
conceived notions regarding the known biology of the problem, but
rather seek to utilize simple mathematical rules to automatically ex-
tract relevant information to both discriminate between two or more
sets of cells (e.g. control vs. effect), and, as importantly, to visual-
ize and understand what are the principal differences between them.
The idea is demonstrated in Figure 4 where the approach developed
in [18][19] was used to visualize the most significant (according
to the p value for difference of means) difference between nuclear
chromatin configuration in cells obtained from normal patients and
patients diagnosed with fetal-type hepatoblastoma. It is clear that,
aside from nuclear size differences, how much chromatin is placed
in the interior of each nucleus as opposed to along its boundary is the
major discriminant factor. It is clear from this figure that cancerous
cells have a tendency to have its chromatin more evenly distributed
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throughout the nuclear envelope. This is consistent with the fact
that cancerous cells divide faster than their normal counterparts, and
that the phenotype associated with nuclei just before cell division
is one where nuclear chromatin is more evenly distributed. Finally,
we mention that one can use this technique to visualize, in a com-
pletely automated fashion, the most significant differences between
two or more sets of cell measurements, but also that the differences
found through this method have been used to successfully classify
cancerous versus normal patients [20].

3. SUMMARY AND DISCUSSION

Computational image analysis methods have become an important
part of cytometry technology. The field has evolved tremendously
since its early days [12]. It is now possible to obtain information
from cellular images beyond abstract numerical features. Explicit
parametric modeling techniques can and have been used to extract
meaningful biological information such as detecting microtubules,
which are well below the optical resolution used to acquire such im-
ages, for example. In addition, modern approaches for measuring
distances between cellular shapes [21] and molecules and protein
distributions [20, 18] have enabled direct visualization and biologi-
cal understanding of the main variations within a signal dataset, or of
the differences between two classes of cells. Looking forward, bet-
ter integration of such modern techniques for analyzing cell images
with experiments in biology and pathology should further facilitate
more complete characterization of important biological processes.

4. ACKNOWLEDGEMENTS

The author acknowledges support by NIH grants GM088816, and
GM090033. The author acknowledges important contributions from
R.F. Murphy, K.N. Dahl, J.A. Ozolek, D. Slepcev, W. Wang, A.
Sharif, C. Cheng, S. Basu, S. Kolouri, A.B. Tosun, S-R. Park, H.
Huang, J. Guo, and J. Wang.

5. REFERENCES

[1] R. Hooke, Micrographia: or, Some physiological descriptions
of minute bodies made by magnifying glasses. London: J.
Martyn and J. Allestry, 1665.

[2] B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, and
R. Tsien, “The fluorescent toolbox for assessing protein loca-
tion and function,” Science, vol. 312, pp. 217–223, April 2006.

[3] C. Vonesch, F. Aguet, J.-L. Vonesch, and M. Unser, “The col-
lored revolution of bioimaging,” IEEE Signal Processing Mag.,
vol. 23, no. 3, pp. 20–31, 2006.

[4] Y. Hamamura, C. Saito, C. Awai, D. Kurihara, A. Miyawaki,
T. Nakagawa, M. M. Kanaoka, N. Sasaki, A. Nakano,
F. Berger, and T. Higashiyama, “Live-cell imaging reveals the
dynamics of two sperm cells during double fertilization in ara-
bidopsis thaliana.” Curr Biol, vol. 21, no. 6, pp. 497–502,
2011.

[5] E. Ito, M. Fujimoto, K. Ebine, T. Uemura, T. Ueda, and
A. Nakano, “Dynamic behavior of clathrin in arabidopsis
thaliana unveiled by live imaging.” Plant J, vol. 69, no. 2, pp.
204–216, 2012.

[6] E. Hirata, H. Yukinaga, Y. Kamioka, Y. Arakawa,
S. Miyamoto, T. Okada, E. Sahai, and M. Matsuda, “In
vivo fluorescence resonance energy transfer imaging reveals

differential activation of Rho-family GTPases in glioblastoma
cell invasion,” J. Cell Sci., p. in press, 2012.

[7] K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lon-
appan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Mur-
ray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-
throughput single-microparticle imaging flow analyzer.” Proc
Natl Acad Sci U S A, vol. 109, no. 29, pp. 11 630–11 635, 2012.

[8] L. Gau, H. Zhou, P. Luo, Y. Yang, A. A. Hammoudi, K. K.
Wong, G. S. Palapattu, and S. T. Wong, “Label-free high res-
olution imaging of prostate glands and cavernous nerves us-
ing coherent anti-stokes raman scattering microscopy,” Biomed
Opt Express, vol. 18, no. 2, pp. 915–926, 2011.

[9] G. A. Alvarez and P. Cavanagh, “The capacity of visual short-
term memory is set both by visual information load and by
number of objects.” Psychol Sci, vol. 15, no. 2, pp. 106–111,
Feb 2004.

[10] E. Meijering, “Cell segmentation: 50 years down the road,”
IEEE Signal Processing Mag., vol. 29, no. 5, pp. 140–145,
2012.

[11] C, Chen, W. Wang, J. A. Ozolek, N. Lages, S. J. Altschuler,
L. F. Wu, and G. K. Rohde, “A template matching approach for
segmenting microscopy images,” in IEEE Int. Symp. Biomed.
Imaging, 2012, pp. 786–771.

[12] J. M. S. Prewitt and M. L. Mendelsohn, “The analysis of cell
images,” Ann N Y Acad. Sci., vol. 128, pp. 1035–1053, 1966.

[13] L.-S. Loo, L. F. Wu, and S. J. Altschuler, “Image-based mul-
tivariate profiling of drug responses from single cells,” Nature
Methods, vol. 4, pp. 445–453, 2007.

[14] W. Wang, J. Ozolek, and G. K. Rohde, “Detection and classi-
fication of thyroid follicular lesions based on nuclear structure
from histopathology images,” Cytometry Part A, vol. 77, pp.
485–494, 2010.

[15] Z. Yin, X. Zhou, Y. Sun, and S. T. C. Wong, “Online pheno-
type discovery based on minimum classification error model.”
Pattern Recognit, vol. 42, no. 4, pp. 509–522, 2009.

[16] T. Zhao and R. Murphy, “Automated learning of generative
models for subcellular location: building blocks for systems
biology,” Cytometry, vol. A 71, pp. 978–990, 2007.

[17] A. Shariff, R. F. Murphy, and G. K. Rohde, “A generative
model of microtubule distributions, and indirect estimation of
its parameters from fluorescence microscopy images.” Cytom-
etry A, vol. 77, no. 5, pp. 457–466, 2010.

[18] W. Wang, D. Slepcev, S. Basu, J. A. Ozolek, and G. K. Rohde,
“A linear optimal transportation framework for quantifying and
visualizing variations in sets of images,” Int. J. Computer Vi-
sion, in Press, 2012.

[19] W. Wang, Y. Mo, J. A. Ozolek, and G. K. Rohde, “Penalized
fisher discriminant analysis and its application to image-based
morphometry,” Pattern Recognition Letters, vol. 32, no. 15, pp.
2128–2135, 2011.

[20] W. Wang, J. A. Ozolek, D. Slepcev, A. B. Lee, C. Chen, and
G. K. Rohde, “An optimal transportation approach for nuclear
structure-based pathology,” IEEE Trans. Med. Imag., vol. 30,
pp. 621–631, 2011.

[21] G. K. Rohde, A. J. S. Ribeiro, K. N. Dahl, and R. F. Murphy,
“Deformation-based nuclear morphometry: capturing nuclear
shape variation in HeLa cells.” Cytometry, vol. 73A, pp. 341–
350, 2008.

123



Fig. 1. An overview of a typical quantitative image cytometry pipeline.

Fig. 3. Microtubule organization modeling and parameter extraction. The left pane shows three confocal images of real cells and their
counterpart simulated images (computed through the modeling approach described in [17]). The histogram on the right shows the number of
microtubules extracted using this modeling approach for each cell is a set of 50 fixed cells.

Fig. 4. Differences in chromatin organization between normal and cancerous (fetal-type hepatoblastoma) cells computed using the implicit
approach described in [18, 20]. Each bar in the histogram shows the relative number of cells that had their phenotype most closely associated
with the nuclear chromatin image displayed directly below it. The p value for differences of means shows the trend is highly significant.
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