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Abstract— Diffusion weighted magnetic resonance imaging
(dMRI) is used to measure, in vivo, the self-diffusion of water
molecules in biological tissues. High order tensors (HOTs) are
used to model the apparent diffusion coefficient (ADC) profile
at each voxel from the dMRI data. In this paper we propose:
(i) A new method for estimating HOTs from dMRI data based
on weighted least squares (WLS) optimization; and (ii) A new
expression for computing the fractional anisotropy from a HOT
that does not suffer from singularities and spurious zeros. We
also present an empirical evaluation of the proposed method
relative to the two existing methods based on both synthetic
and real human brain dMRI data. The results show that the
proposed method yields more accurate estimation than the
competing methods.

I. INTRODUCTION

Non-Gaussian diffusion models have gained wide attention
among researchers because of their ability to resolve complex
fiber orientations such as fiber crossing, branching or kissing.
Nevertheless because of the lack of a unified framework for
estimating and interpreting these new models, the original
diffusion tensor imaging (DTI), based on the 2nd order
tensor, remains the most common clinically used model. In
the case of 2nd order tensors (3× 3 matrix) their estimation
and interpretation using eigen-analysis is well established.
From the eigenvalue-decomposition one obtains the main
diffusion direction and can compute scalars that measure
the anisotropy and the relative diffusion strength in differ-
ent directions; e.g. fractional anisotropy (FA) and relative
anisotropy (RA). One of the more promising alternatives to
DTI for modeling complex fiber architectures in the brain is
the HOT model introduced by Ozarslan and Mareci [1]. The
estimation of HOTs from dMRI data, and their interpretation,
remain active areas of research. The intrinsic properties of
the ADC profile are antipodal symmetry and positivity [2].
Symmetry dictates using even order symmetric HOTs whilst
positivity is taken into consideration during estimation. Other
estimation considerations include applicability to any even
order HOT, robustness to noise, and computational efficiency.
Although each of these is important from a theoretical point
of view, in practice one can assign different weightings to
each.

To date two efficient methods for HOT-based ADC profile
estimation have been proposed. The first, hereinafter called
method 1, is that proposed in [3] for estimating symmetric
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positive definite HOTs of any order using non-negative least-
squares (NNLS) optimization. However we show that this
approach yields large fitting errors in the noise-free case. The
second, hereinafter called method 2, is the method proposed
in [2] for estimating the positive semi-definite (PSD) tensor.
The method stems from an exact closed-form linear least
squares (LS) solution, testing whether the solution is PSD,
and if not solving a non-linear least squares optimization
problem. However [2] note that there is no practical differ-
ence observed between this solution and the LS solution,
i.e. the closed-form LS solution is PSD itself, for the real
human brain data they used. The question remains, when
can we neglect the PSD constraint? An important observation
about both methods 1 and 2 is that neither accounts for the
Rician noise inherent in dMRI data. Herein we present a
method that does. We also present an empirical evaluation
of the method relative to the two existing methods based on
both synthetic and real human brain dMRI data. In [2] a
framework for the interpretation of HOTs is also presented
based on the concept of Z-eigenvalues [4] (a generalization of
eigen-decomposition to HOTs). An expression for computing
the FA from a HOT is also given. A caveat however is
that although the expression reduces to the usual defini-
tion for DTI (2nd order tensor), it yields singularities for
HOTs with a single Z-eigenvalue and implausible values for
HOTs with several equal Z-eigenvalues. Herein we proffer
a new expression to resolve this problem. The remainder
of this paper is organized as follows. In the next section
we introduce notation and definitions for describing HOTs
and briefly introduce methods 1 and 2 for estimating HOTs.
Section III proposes a new method for HOT-based ADC
profile estimation that is both more robust to noise and
simple to implement. A new FA definition for HOTs is also
given. In section IV, experimental results and comparisons
with methods 1 and 2 are presented based on synthetic and
real dMRI data. We also briefly highlight advantages and
drawbacks of methods 1 and 2.

II. RELATED WORK

This section briefly reviews the basics of HOT-based
ADC profile estimation both for the sake of completeness
and to define notation. Readers are referred to [3], [2] for
more detail. The Stejskal-Tanner equation for dMRI signal
attenuation is [5]:
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= d(g) (1)

where d(g) is the diffusivity function, S is the measured
signal when the diffusion sensitizing gradient is applied in
the direction g, S0 is the observed signal in the absence of
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such a gradient, and b is the diffusion weighting taken to be
constant over all measurements. The diffusivity function d(g)
is modeled using even order symmetric tensors as follows:

d(g) =

m∑
i=0

m−i∑
j=0

tijg
i
1g
j
2g
m−i−j
3 (2)

where g = [g1 g2 g3]T and the tij denote n = (m+ 1)(m+
2)/2 distinct entries of the m-th order tensor. In [2] the
diffusivity function is expressed as the inner product

d(g) = tT ĝ (3)

where ĝ = [gm3 g2g
m−1
3 g22g

m−2
3 · · · gm1 ]T and t =

[t00 t01 · · · tm0]. Note that both vectors t and ĝ are vectors
in Rn and d(g,t) = d(g) is used for simplification. Given
measurements in N > n different directions gk, uniformly
distributed over the unit sphere Ω, the HOT estimation
problem can then be formulated as [2]:

min

N∑
k=1

(dk − d̂k)2, s.t. d(g) ≥ 0 (4)

where dk = d(gk) are the ADC values predicted by the
model, and d̂k = −b−1 ln(Sk/S0) are the measured ADC
values. Let G be an N × n matrix defined G = [ĝ1 ĝ2 · · ·
ĝN ]T . For relatively big N it is assumed that G has row
rank n. Let y be a column vector of size N , whose elements
are the measured ADC values; i.e. y = − 1

b [ln(S1/S0) · · ·
ln(SN/S0)]T . Equation (4) can then be written

min
t∈Rn

(y −Gt)T (y −Gt), s.t. d(g) ≥ 0 (5)

In method 2 this optimization problem is solved as follows.
A solution is initially sought for the problem without con-
straints. This turns out to be the well-known LS solution
topt = G+y = (GTG)−1GTy. If the LS solution satisfies
d(g) ≥ 0, ∀g ∈ Ω, then it is the final solution. If not then
we have to solve another optimization problem [2]:

min
t∈Rn

(y −Gt)T (y −Gt), s.t. λmin(T) = 0 (6)

where λmin(T) is the smallest Z-eigenvalue of T (m-th
order tensor). In method 2 the optimization problem is
solved by the gradient descent method and an algorithm
for Z-eigen decomposition of HOTs is also proffered. Z-
eigenvectors correspond to the critical points of the spherical
function defined in equation (2). They represent the dominant
diffusion directions. The corresponding Z-eigenvalues are
used to interpret the estimated HOT; e.g. to compute the FA.
In method 1 the HOT-based ADC profile estimation problem
is formulated as a NNLS optimization and solved using an
iterative method. Thus it does not necessarily converge to
the optimal (LS) solution.

III. PROPOSED WORK

In attempting to minimize the error between the HOT
model and the observed ADC values one must consider that
the intensity S in magnetic resonance intensity images is
corrupted by Rician distributed noise [6]. The measurements
of diffusion signal magnitude can thus be modeled as [7]:

S(gi) = |A(gi) + c|, i = 1, . . . , N (7)

where c is Rician distributed random noise with standard
deviation σ, A(gi) =

∑u

j=1
S0

u exp(−bgT

i Djgi) is the
ideal signal (without noise) from a voxel containing u fiber
bundles and Dj is the 2nd order diffusion tensor for the j-
th fiber. Note that SNR is measured as the baseline signal
divided by the standard deviation of noise [8] (which is
1/σ in our case). Taking the noise into account would
improve estimation accuracy. Neither method 1 nor method
2 provide a mechanism to account for noise during the op-
timization/estimation step. This produces a large estimation
error when we deal with real world problems (SNR ≤ 50
[3], [2]). We propose a new HOT estimation method which
maintains all of the advantages of methods 1 and 2 but
includes a mechanism to mitigate noise. First we eliminate
the PSD constraint (based on the conclusion from [2] and our
experiments) and then we add an N ×N weighting matrix
W to the cost function in (5) as follows:

min
t∈Rn

(y −Gt)TW(y −Gt) (8)

where W is a symmetric positive definite matrix [9]. For
instance it can be a diagonal matrix with positive diagonal
elements. The rationale for introducing the weighting to
the cost function is to reduce the contribution of those
measurements deemed not to be reliable. The problem in
(8) is known as weighted least squares (WLS) optimization
and has the following closed-form solution:

topt = (GTWG)−1GTWy (9)

In principle the weighting matrix is defined in terms of the
statistics of the interfering noise. We propose to set W as
diag(w11, ..., wii, ..., wNN ) where:

wii =
||t||2

||t− ti||2
(10)

where t is the LS solution considering all measured data
and ti is the LS solution considering all measured data
excluding the measurement in the gradient direction gi. We
normalize the diagonal elements to sum to one. Exclusion of
noise-affected measurements leads to a large deviation from
the LS solution. Thus outliers and noisy measurements are
assigned low weights. On the other hand, inliers are expected
to achieve large weights. Therefore WLS is expected to
outperform the LS solution (especially in the presence of
noise) because it prevents over-fitting to the observed noisy
signal. We note that [10] also uses WLS for 2nd order
diffusion tensor estimation but point out two significant
differences. Firstly we take a different approach to obtain
the weighting matrix. Secondly we define a criterion (based
on SNR level) to evaluate whether the PSD constraint is
necessary.

A. An Alternative Expression for FA

We propose the following expression as a measure of
fractional anisotropy derived from a HOT having v Z-
eigenvalues:
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FA? =
λmax

vλmean
(11)

where λmax and λmean are the maximum and mean re-
spectively of the Z-eigenvalues. The equation defined in [2]
for computing FA, FAPSDT =

√
v
v−1

∑v
i=1(λi−λmean)2∑v

i=1 λ
2
i

, can
yield values approaching infinity for v = 1, or zero for
two equally important dominant directions. In the context
of 2nd order tensors, having 3 equal eigenvalues implies
isotropic diffusion (FA = 0, as occurs for cerebrospinal
fluid). However in the case of a HOT it may simply reflect
a complex anisotropic environment (e.g. 2 crossing fiber
bundles). Consider the set of eigenvalues {α, α+ β} where
α and β are real. It can be seen that lim

β→0
FA? = lim

α→∞
FA? =

0.5 and lim
β→0

FAPSDT = lim
α→∞

FAPSDT = 0 and so our

proposed definition gives more plausible FA values for
HOTs. Although our definition does not reduce to the regular
FA expression for the 2nd order model, Fig 3 shows that it
conveys the same information.

IV. EXPERIMENTS AND RESULTS

This section describes the simulation setup, test results and
evaluation of the proposed method. Further, we also compare
the performance of the proposed method with the two ex-
isting state-of-the-art HOT-based diffusion profile estimation
methods; i.e. methods 1 and 2. Synthetic data were generated
using the model given by (7). The following set up was
used:N = 81, b = 1500sec/(mm2), D1 = diag(17, 1, 1) ×
10−4(mm2)/sec, D2 = diag(1, 17, 1) × 10−4(mm2)/sec,
u = 2. We used m = 4 and the same criterion for computing
the estimation error as in [3]:

Error =

∑N
i=1 |dtrue(gi)− d(gi)|∑N

i=1 |dtrue(gi)|
(12)

First we generated four synthetic ADC profiles simulating
two fibers crossing in different directions (first row of Fig. 1).
Then we added noise (SNR=12.5) and applied the proposed
method to reconstruct the ADC profile. Results (averaged
over 100 iterations) show that the underlying ADC profile
and main diffusion directions are reconstructed successfully
(second row of Fig. 1). A quantitative comparison of methods
1 and 2 with our proposed method for ADC profile estima-
tion on synthetic data is shown in Fig. 2. Reconstruction error
is averaged over 100 realizations of Rician noise. The graph
shows that our proposed (WLS) method performs the same
as method 2 for high SNR measurements. However for the
typical level of noise SNR ' 12.5 [8], the performance
of the proposed method is significantly better than that
of method 1 and slightly better than that of method 2.
Fig. 3 shows that our proposed definition for FA provides
a more plausible measure of anisotropy both on a real
healthy human brain (first row) and realistic phantom dMRI
data [11] (second row). The real data was acquired in 32
directions with a 1.5T scanner using b = 800sec/(mm2).
Voxels in which FAPSDT (left column) incorrectly goes to
zero or infinity are marked with white circles and triangles

Fig. 1. WLS-based ADC profile reconstruction in four synthetic voxels:
First row is the ground truth and the second row is the reconstruced ADC
profile when SNR=12.5. The plots were produced using the same software
as [12].

Fig. 2. Comparison of the HOT estimation error for our WLS method and
methods 1 and 2.

respectively. It can be seen that the FA map generated with
the new definition: (i) does not suffer from singularities or
spurious zeros; (ii) has the same dynamic range as that of
[2]; (iii) is as informative as that of [2] (see also Fig. 4); and
(iv) can compute more feasible FA values for HOTs with an
arbitrary number of Z-eigenvalues (see also Fig. 5).

A. Discussion

In contrast to the results reported in Fig. 2 of [2], our
results show that negative Z-eigenvalues are most likely to
happen as SNR reduces (LS solution is not PSD anymore).
This means that if we acquire dMRI data with high enough
SNR, the PSD constraint is guaranteed. According to our
experiments, for synthetic data of SNR ≥ 8.3, the LS solu-
tion is PSD. This can explain the observation in [2] that no
negative eigenvalues were observed in their experiments on a
human brain dataset. Both [2], [3] evaluate the performance
of their respective methods based on signal reconstruction
error (defined in (12)). However, the major direction of diffu-
sion obtained from a Z-eigen-decomposition of the estimated
tensor could be another criterion. An interesting observation,
not noted in [2], is that the additional effort associated with
obtaining the PSDT solution does not significantly change
either the accuracy of signal reconstruction or the estimated
major diffusion direction (see Fig. 1 and tables 1 and 2 of
[2]). This is confirmed in our experiments and forms the
rationale for elimination of the PSD constraint.

The proposed Z-eigenvalue computation algorithm in [2]
can be used for Z-eigen decomposition of HOTs regardless
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Fig. 3. Spurious FA changes are resolved using our FA definition.
FAPSDT (left column) and FA∗ (right column) maps are shown for
an axial slice of a human brain (first row) and realistic phantom data
(second row). The first row shows that FA∗ carries the same information
as FAPSDT. The second row shows that FA∗ is more informative than
FAPSDT. Voxels for which the regular FA incorrectly goes to zero or
infinity are marked with white circles and triangles, respectively.

Fig. 4. FA changes for two sets of eigenvalues: {1, 1, a} and {1, 10, a}.
FA∗ carries the same information as FAPSDT.

of the applied estimation method. However it has several
shortcomings. In some cases it may lead to an infinite number
of eigenvalues. For example when all entries of a 4-th order
tensor are zero except t31 = t40 = 1.

In method 1 the HOT-based ADC profile estimation prob-
lem, formulated as a NNLS optimization, is solved using
an iterative method. Consequently it does not necessarily
converge to the LS solution. Our experiments show that it
produces a large error in low-noise cases (see Fig. 2). In
addition it does not address the issue of HOT interpretation.

V. CONCLUSIONS

A novel WLS-based method for voxel-wise HOT-based
ADC profile estimation was presented and empirically eval-
uated relative to the two existing state-of-the-art methods
of [3] and [2] (which utilize NNLS and LS optimization
respectively). The results show that the proposed method
yields more accurate estimation. The superior performance
stems from the fact that in contrast to the existing methods
it accounts for the Rician distributed noise inherent in dMRI

Fig. 5. FA changes with respect to v for a tensor having v, almost equal,
Z-eigenvalues {1, 1.1, ..., 1.1λv−1}. The FA value should approach zero
as v → ∞. This is the case for FA∗ but not FAPSDT.

data. Also the results show that the NNLS method does
not converge to the optimal solution for low-noise cases
(leads to large estimation error). In contrast our proposed
framework is able to mitigate noise but still converge to the
optimal solution in the noise-free case. Finally the results
show that negative Z-eigenvalues are more likely to occur
in low SNR cases. Consequently the elimination of the
PSD constraint does not adversely affect HOT estimation
accuracy for high SNR measurements. Several shortcomings
of the Z-eigen analysis of HOTs were noted and remain
open research problems. Finally a new FA definition for
HOTs was presented that does not suffer from singularities
or spurious zeros while having the same information content
as generalized conventional map.
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