
GPU-Based acceleration of an automatic white matter segmentation
algorithm using CUDA

Nicole Labra 1,2, Miguel Figueroa1,2, Pamela Guevara1

Delphine Duclap 3, Josselin Hoeunou 3,4, Cyril Poupon 3 and Jean-François Mangin 3

1Dept. of Electrical Engineering 2 Center for Optics & Photonics 3 I2BM 4 INSERM
Universidad de Concepción Universidad de Concepción Neurospin, CEA U955 Unit

Concepción, Chile Concepción, Chile Gif-sur-Yvette, France Paris, France

Abstract— This paper presents a parallel implementation
of an algorithm for automatic segmentation of white matter
fibers from tractography data. We execute the algorithm in
parallel using a high-end video card with a Graphics Processing
Unit (GPU) as a computation accelerator, using the CUDA
language. By exploiting the parallelism and the properties of the
memory hierarchy available on the GPU, we obtain a speedup
in execution time of 33.6 with respect to an optimized sequential
version of the algorithm written in C, and of 240 with respect
to the original Python/C++ implementation. The execution time
is reduced from more than two hours to only 35 seconds for
a subject dataset of 800,000 fibers, thus enabling applications
that use interactive segmentation and visualization of small to
medium-sized tractography datasets.

I. INTRODUCTION

The study of brain connectivity is an attractive research
area for neuroscience and clinical studies. Nowadays, recent
diffusion Magnetic Resonance Imaging (dMRI) techniques
with high angular resolution (HARDI) combined with several
accurate pre- and post-processing methods, have largely
improved the quality of tractography. Resulting tractography
datasets are highly accurate and contain valuable information
for a better description and analysis of the human con-
nections, but their high complexity and huge size pose a
requirement for a new generation of analysis methods. Some
methods for automatic segmentation of white matter (WM)
bundles automatically place a set of regions of interest (ROI),
defined on a brain atlas in a standard space [10]. These
regions are then warped to each subject using linear or non-
linear registration. White matter bundles are then extracted in
function of the connected and traversed regions. In [3], the
authors proposed an automatic WM segmentation method
based on a multi-subject WM bundle atlas. The original
method performed first intra-subject clustering [4] in order to
reduce the size of the fiber dataset and then used a similarity
measure for classifying the fibers and extract the known
bundles. This method was compared with an accurate ROI-
based automatic method [10] and was found to produce good
results because fiber shape, length and position information,
as well inter-subject variability, are embedded in the atlas. It
was proposed for huge tractography datasets, with millions
of fibers, even though it is applicable to smaller datasets.

Cluster-based methods such as the one described above

can deal with datasets with a huge number of fibers, but suf-
fer from very long processing times. For small and medium-
size tractography datasets (50,000 to 2,000,000 fibers), we
can use faster and more direct algorithms. Moreover, ex-
ploiting the large-scale parallelism made available by new
Graphics Processing Unit (GPU) hardware, we can devise
applications that perform interactive segmentation and visu-
alization of white matter tracts. GPUs can exploit memory
hierarchy and fine-grained parallelism available in hardware
to achieve high performance at an affordable cost [5], [8].
For example, [6] proposes a real-time interactive fiber tracker
from user-defined volume of interests. In [9], the authors im-
plement a GPU-based Bayesian framework for probabilistic
brain fiber tractography, significantly reducing the processing
time. Other works explore the graphical capabilities of GPUs
for the exploration of Diffusion Tensor Imaging (DTI) Fibers
or the improvement of fiber rendering. Closer to our research,
[7] proposes an accelerated fiber clustering/segmentation
method. The authors implemented a fiber pairwise similarity
measure using several GPU architectures. They obtained
very good speedup with respect to a sequential processing,
but they give no details about the clustering/segmentation
method processing times nor the tractography dataset sizes.
Nevertheless, the results show that GPUs can significantly
reduce the computation times of these algorithms.

In this work we focus on the optimization of the automatic
WM segmentation algorithm proposed in [3], applied to
small and medium size tractography datasets. First, we
modified the original algorithm written in Python/C++ to
avoid the first intra-subject clustering and work with a whole-
brain tractography dataset. Next, we profiled the code to
identify critical sections and rewrote them to run in parallel
on a GPU using the Compute Unified Device Architecture
(CUDA) language. Finally, we used actual tractography data
to evaluate the performance of our parallelized code.

II. MATERIAL AND METHODS
A. Diffusion and Tractography Datasets

For this analysis, we used healthy subjects from a High
Angular Resolution Diffusion Imaging (HARDI) database.
Acquisitions were obtained using a MRI Siemens Mag-
netom TrioTim 3T, 12-channel head-coil. The protocol

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 89

Tractography dataset (TD)
(subject T2 space)

Bundle atlas (BA)
(Talairach space, 21 p)

Talairach transform

fiber resampling (21 p)

for each fiber on TD & each centroid on BA:
Max. Euclidean dist. between corresp. points (dME)

for each bundle:
 - Selection of the min dME

- Threashold comparison

Segmented bundles (subject T2 space)

for each fiber point:
- calculation of the Euclidean distance

selection of max distance

for direct and indirect sense:

selection of min unidirectional distance

Fig. 1. Algorithm for segmentation of white matter bundles

included a high-resolution T1-weighted acquisition (echo
time = 2.98ms, repetition time=2300ms, 160 sagittal slices,
1.0x1.0x1.1mm) and a DW-EPI sequence along 41 directions
(2.0x2.0x2.0mm, b=1000s/mm2, plus one b=0 image, echo
time 87ms, repetition time 14000ms, 60 axial slices).

B. Preprocessing

The data were processed using BrainVISA/Connectomist-
2.0 software [2]. They were preliminary corrected for all the
sources of artifacts and outliers were also removed. Then,
the analytical Q-ball model [1] was computed to obtain ODF
fields in each voxel. A streamline deterministic tractography
was performed on the entire T1-based brain mask using a
forward step of 0.5mm. This lead to a dataset with an average
of one million of fibers, that was then subsampled in order
to get smaller testing datasets.

C. White matter bundle segmentation

Fig. 1 shows our automatic WM segmentation algorithm
[3], written in a combination of Python and C++, and
without the application of the intra-subject clustering. First,
the algorithm was adapted for receiving a new dataset from
the whole brain (not divided into left/right hemispheres and
inter-hemispheric bundles). The algorithm normalizes the
new tractography dataset to the bundle atlas space (Talairach
space). Then, each fiber is resampled using 21 equally-
spaced points. Next, a distance metric is computed between
each fiber of the tractography dataset and each centroid of
the multi-subject atlas, with a total of 9,085 centroids for
left/right hemispheres and inter-hemispheric bundles. The
distance metric used is the maximum of the Euclidean
distances between corresponding points [3]. Finally, each in-
dividual fiber is labeled by the closest atlas bundle, provided
that the distance to this bundle, namely the smallest pairwise
distance to the centroids representing this bundle, is lower
than a given threshold for each bundle.

Fig. 2. General schematics of the algorithm implementationon for a GPU

D. Algorithm optimization

We started the optimization of the algorithm by rewriting
the original implementation entirely in C, using dynamic
RAM assignment and local registers in the classification
algorithm. We restructured the code, removing redundant
sections and computations that do not significantly affect
the classification results. We compiled the code using gcc
with third-level optimizations for shortest execution time on
a single CPU core. We used a profiler (gprof) to analyze the
C code and identify computationally-intensive blocks, which
became candidates for a parallel implementation.

From the profiling analysis it became clear that the ex-
ecution time is largely dominated by the computation of
the Euclidean distance between the sampling points in each
subject fiber and the corresponding point in each centroid of
the atlas, which is O(NM), where N is the number of fibers
in the test subject and M is the number of total centroids
in the atlas. Other computationally-intensive parts of the
algorithm include computing the distance metric (selecting
the maximum distance among the points for each subject
fiber), recomputing the previous distances for the inverse
direction of the subject fiber and picking the minimum
metric, normalizing the distance metric by the length of the
fiber, and selecting the closest centroid to each fiber and
labeling the fiber with its bundle if the distance is smaller
than the bundle’s threshold.

We then wrote a parallel version of the algorithm for
an nVidia GPU using the CUDA language. Fig. 2 depicts
the architecture of the program. We wrote three kernels that
execute on the GPU and concentrate most of the execution

90

Fig. 3. Distribution of data in GPU memory

Fig. 4. Distribution of computation in Kernel 1

time. The program first reserves global memory on the video
RAM, leaving some extra memory for temporary data and
final results. The CPU then transfers the entire atlas dataset
to the global memory. Because the subject dataset is too large
to fit in the global memory (between 12,500 and 2,000,000
fibers), the CPU partitions the dataset and transfers it to the
memory in segments of up to 80,000 fibers. Because the atlas
contains only 9,085 centroids, the whole set fits in the global
memory. The CPU then iteratively invokes Kernel 1 on the
GPU for each segment of data that it transfers.

Fig. 3 shows how we distribute the data in the GPU
memory hierarchy in order to optimize the operation of the
algorithm. There are three levels of hierarchy: registers and
local memory that can be privately accessed by each thread
executing on the GPU, shared memory which is accessed by
all threads belonging to the same thread block, and global
memory available to all threads on the GPU. The constant
memory is also globally accessible, but it is of small size
(only 64KB), cannot be modified within the program, has
very low latency and reduces the bandwidth requirements
when multiple threads need to access the same memory
location simultaneously. We use the constant memory to store

parameters such as the threshold values, and the number of
centroids for each bundle in the atlas. On the other hand, the
global memory is more flexible and larger (6GB in our video
card), but it has a much higher latency and its bandwidth is
more limited. We use the global memory as an intermediate
stage to transfer data between the CPU memory and the
GPU, in particular the values of the atlas fiber datasets, as
well as the computation results.

Because the global memory is slow, the GPU first transfers
the data to internal shared memory. The CUDA architecture
partitions the computation of a kernel in thread blocks, which
share access to local memory. These shared memories are
much faster than global RAM, and the data stored in them
can be accessed and modified by multiples threads in parallel,
thus boosting the performance of the program. The data
exists in the memory for the duration of the thread block
(the lifetime of the kernel). Finally, each thread can access
local memory and registers used to store temporary results
that require quick access from within the same thread. We
use registers to store partial results in the computation of a
single Euclidean distance.

As Fig. 2 shows, the program runs three kernels on the
GPU. Kernel 1 exploits the parallelism available in the com-
putation of the Euclidean distance between corresponding
points for each pair (subject fiber, atlas centroid). This kernel
represents the largest computational load of the algorithm,
and stores the data in bidimensional matrices of width 21
(the number of sampling points for each fiber) and length
NM , where N is the length of the segment of the subject
dataset transferred to the global memory, and M is the size
of the atlas dataset (9,085). Fig. 4 shows how we distribute
the computation of Kernel 1 in the GPU. The kernel executes
three main procedures. The first is to copy the input data from
global to shared memory, and then compute the Euclidean
distance. In order to compute the distance, each thread within
a block accesses one 3D point in space (coordinates x, y, and
z) of the subject fiber and atlas centroid. The computation
is performed with the subject fiber in the order it is stored
in the dataset, and also inverting the order of the sampling
points. The distance between the fiber and the centroid is
computed as the maximum value of the distance between
corresponding points. The GPU also computes the maximum
value in parallel, using a tree reduction on the locally-
computed distances. The maximum is computed first within a
block in shared memory and then among all blocks in global
memory. Because several threads compete for access to the
memory to store their results, we use an atomic maximum
function available in CUDA to avoid memory conflicts.

Kernel 2 in Fig. 2 uses considerably less data and com-
putation than Kernel 1, and therefore we use mainly global
memory and some registers for temporary results. The first
step compares the distance metric computed for the direct
and inverse versions of each subject fiber, and chooses the
minimum as the distance between that fiber and centroid.
The second step normalizes this distance by adding to it a
correction value that approaches zero when the fiber and
the centroid have similar length and increases with the

91

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

Number of fibers

T
im

e
 (

s
)

Original code

Optimized code

CUDA code

Fig. 5. Execution time of the three implementations (log-log)

difference in their lengths. The correction value requires the
computation of the Euclidean distance between the first two
points of each fiber and centroid.

Finally, Kernel 3 also works directly on global memory.
The kernel performs the final step in the classification: First,
it uses a tree reduction to compute in parallel the minimum
distance between each subject fiber and each fiber in the
atlas. For each bundle, it compares this minimum distance
with the bundle threshold stored in constant memory. If the
value is smaller than the threshold, the fiber is labeled with
the name of the bundle. Finally, the results are transferred
back to the CPU memory.

III. RESULTS

We implemented the algorithm described above on an
nVidia Quadro 6000 video board with 6GB of GDDR5 global
memory and a Fermi GPU with 448 CUDA cores and a
574MHz core clock. The host that runs the sequential C
implementation of the algorithm uses an Intel i7-3820 CPU
with a 3.6GHz clock and 8GB of DDR3 RAM.

We tested our implementations of the algorithm using an
atlas containing 9,085 centroids (fibers), and varying the size
of the dataset (number of fibers of the subject on which
we perform segmentation) between 12,500 and 1,600,000
subject fibers. Fig. 5 shows the execution time of the algo-
rithm in each of the implementations (original Python/C++,
optimized sequential C, and GPU), which includes both data
processing and file I/O, albeit the execution time is vastly
dominated by data processing. To make it easier to visualize
the remakably different execution times, we plotted the graph
on a log-log scale. In all cases, the execution time is linear
with respect to the size of the dataset. The execution time
of the Python/C++ implementation varies between 108 and
8,403 seconds for 800,000 fibers. The Python/C++ program
supports only up to one million fibers because the fiber
number was first reduced by clustering.

The optimized sequential C implementation reduces the
execution time to between 10.7 and 719.8 seconds (1,435

seconds for 1.6 million fibers), which represents a speedup
between 10.1 and 12.7 with respect to the Python/C++ pro-
gram (speedup is defined as the ratio between the execution
time of an unoptimized program and an optimized version).
Finally, the execution time of the CUDA implementation is
between 0.9 and 31.4 seconds for up to 800,000 fibers (63.3
seconds for 1.6 million fibers), with a speedup between 12.2
and 23 compared to the optimized C version, and between
119.8 and 286.7 compared to the Python/C++ version.

IV. DISCUSSION AND CONCLUSION
We have presented a GPU-based parallel implementation

of an automatic segmentation algorithm for classification of
white matter fibers based on a labeled atlas. Our work shows
how placing special care in the distribution of the computa-
tion and exploitation of the memory hierarchy available in
the GPU can lead to important reductions in execution time,
going from more than two hours in the original implementa-
tion to only 31 seconds for a dataset of 800,000 fibers. Such
a speedup opens the road for interactive analysis of small
and medium-sized tractography datasets using affordable
hardware. The acceleration of the proposed implementation
with more optimized algorithms, like a multi-scale approach
for distance calculation, enables us to envision interactive
segmentation and visualization of white matter tracts which
can be used for neuroscience and clinical studies.

V. ACKNOLEDGMENTS
This work was partially funded by the Chilean govern-

ment via Fondecyt grants 112101 and 11121644, and PIA-
CONICYT grant PFB 0824. The authors would like to thank
Marion Leboyer for providing the testing HARDI database.

REFERENCES

[1] M. Descoteaux, E. Angelino, S. Fitzgibbons, and R. Deriche. Regu-
larized, fast and robust analytical q-ball imaging. Magn. Reson. Med.,
58:497–510, 2007.

[2] D. Duclap, A. Lebois, B. Schmitt, O. Riff, P. Guevara, L. Marrakchi-
Kacem, V. Brion, F. Poupon, J.-F-Mangin, and C. Poupon.
Connectomist-2.0: a novel diffusion analysis toolbox for BrainVISA.
In ESMRMB 2012, 2012.

[3] P. Guevara, D. Duclap, C. Poupon, L. Marrakchi-Kacem, P. Fillard,
D. Lebihan, M. Leboyer, J. Houenou, and J-F. Mangin. Automatic
fiber bundle segmentation in massive tractography datasets using a
multi-subject bundle atlas. Neuroimage, 61(4):1083–1099, Jul 2012.

[4] P. Guevara, C. Poupon, D. Riviére, Y. Cointepas, M. Descoteaux,
B. Thirion, and J.-F. Mangin. Robust clustering of massive tractogra-
phy datasets. NeuroImage, 54(3):1975–1993, Feb 2011.

[5] D. B. Kirk and W.-M. W. Hwu. Programming Massively Parallel
Processors: A Hands-on Approach. M. Kaufmann, 2010.

[6] A. Mittmann, T. H. C. Nobrega, E. Comunello, J. P. O. Pinto, P. R.
Dellani, P. Stoeter, and A. von Wangenheim. Performing real-time
interactive fiber tracking. J Digit Imaging, 24(2):339–351, Apr 2011.

[7] C. Ros, R. Tandetzky, D. Güllmar, and J.R. Reichenbach. GPGPU
computing for the cluster analysis of fiber tracts: Replacing a $15000
high end PC with a $500 graphics card. In ISMRM 2011, 2011.

[8] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to
General-Purpose GPU Programming. Addison-Wesley, 2012.

[9] M. Xu, X. Zhang, Y. Wang, L. Ren, Z. Wen, Y. Xu, G. Gong, N.i
Xu, and H. Yang. Probabilistic brain fiber tractography on gpus. In
IPDPSW 2012, pages 742–751, Washington, DC, USA, 2012. IEEE
Computer Society.

[10] Y. Zhang, J. Zhang, K. Oishi, and et al. Atlas-guided tract recon-
struction for automated and comprehensive examination of the white
matter anatomy. NeuroImage, 52(4):1289 – 1301, 2010.

92

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

