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Abstract— We consider the problem of clustering neural fiber
pathways, produced from diffusion MRI data via tractography,
into different bundles. Existing clustering methods often suffer
from the burden of computing pairwise fiber (dis)similarities,
which escalates quadratically as the number of fiber pathways
increases. To address this challenge, we adopt the scenario of
clustering data streams into the fiber clustering framework.
Specifically, we propose to use an online hierarchical clustering
method, which yields a framework similar to doing clustering
while simultaneously performing tractography. We evaluate the
proposed method through experiments on phantom and real
diffusion MRI data. Experiments on phantom data evaluate the
sensitivity of our method to initialization and show its superior
performance compared with alternative methods. Experiments
on real data demonstrate the accuracy in clustering selected
white matter fiber tracts into anatomically consistent bundles.

I. INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) can describe
the white matter (WM) architecture in vivo by quantifying
variations in water diffusion patterns as images of the MR
signal attenuation along a set of directions. These diffusion
weighted images provide insights into the ensemble average
propagator [1], a function that reflects the underlying local
fiber orientations in white matter. This unique property of
dMRI has generated an influx in the development of tools
for inferring the structural brain connectivity from dMRI
data, because such tools can advance research on several
neurological diseases and psychiatric disorders [2].

Quantification of changes in brain connectivity (i.e., the
WM architecture) often includes diffusion estimation and
representation (e.g., diffusion tensors [3], orientation distribu-
tion functions [4], [5], etc.), tractography [6], and statistical
analysis based on the extracted fiber pathways [7]. In clinical
applications, it is a common practice to focus on selected
WM fiber bundles (i.e., collections of pathways), whose
architecture is anticipated to be affected by development,
degeneration or disease, by means of manually placing regions
of interest (ROIs). This cumbersome and error-prone step
is usually necessary to eliminate spurious pathways and/or
select a collection of spatially similar ones. In that regard,
automatically grouping similar pathways into bundles that are
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consistent with the underlying neuroanatomy is important for
fast, reliable, and reproducible analysis of brain connectivity.

Prior work on WM fiber clustering can be roughly cat-
egorized into two groups: i. Methods that perform heavy
preprocessing to cluster a large number of fiber pathways
(e.g., resulting from the whole-brain tractography), and
consider accuracy in clustering, rather than runtime, as the
sole performance criterion; ii. Simple batch methods that
tackle the problem of clustering a small number of pathways.
For instance, in the former, there are sophisticated (and often
data-dependent) frameworks, which use different grouping
strategies, as well as anatomical atlas guidance [8]–[10].
The latter group contains methods largely based on spectral
clustering [10], manifold learning [11], affinity propagation
[12], hierarchical clustering [13], and Bregman soft clustering
[14]. Some of these methods suffer from the burden of
computing pairwise fiber (dis)similarities, which escalates
quadratically as the number of pathways increases linearly.
However, to our knowledge, online clustering (e.g., clustering
streams of pathways) has not hitherto been considered as a
solution to the problem of clustering large number of fibers.

In this work, we propose to use an online hierarchical
clustering algorithm, which initially accepts a small set of
fiber pathways to generate a user-specified number of clusters
represented with parametric models. Then the algorithm either
assigns a label to a recently extracted fiber pathway, or put
that pathway in a reservoir for labeling following the update
of the cluster parameters. We evaluate our method through
experiments on phantom and real dMRI datasets.

II. METHODS

We employ the generic online clustering framework de-
scribed in [15], where the data streams (i.e., the set of
fiber pathways {Xn}Nn=1, where Xn := (xn,1, xn,2, . . . ) and
xn,m∈R3) provided at a particular time point can be analyzed
using different baseline clustering methods. Here, we utilize
the hierarchical clustering algorithm as the baseline, for
which the number of clusters is specified beforehand.

A. Hierarchical Clustering

Hierarchical clustering (HC) is a greedy grouping strategy,
which is either agglomerative or divisive [16]. Agglomerative
HC is a bottom-up approach, where each item (in our case,
a fiber pathway) is initiated as a different cluster center and
the clusters are merged while moving up the hierarchy [17].
Divisive HC, on the other hand, initially assigns all the items
to a single cluster and then splits it while moving down
the hierarchy. The resulting hierarchical graph is called a
dendrogram (see Fig. 1), which is used to choose the level
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Fig. 1. Dendrograms (of synthetically generated items) with different
agglomerative merging levels. The y-axis is the dissimilarity between the
cluster centers: (a) Full dendrogram, where each item is assigned to a separate
cluster, (b) Dendrogram where individual clusters are merged into 7 groups,
(c) Dendrogram where the previous 7 clusters are merged into 3 groups.

of division/merging based on the dissimilarities between the
items. In our framework, we employ agglomerative HC and
quantify the dissimilarity between two fiber pathways Xi =
(xi,1, xi,2, . . . ) and Xj = (xj,1, xj,2, . . . ) by the symmetrized
Chamfer distance (in voxels) [18], which is computed as

d(Xi, Xj) =
1

2

(
dChamfer(Xi, Xj) + dChamfer(Xj , Xi)

)
, (1)

with dChamfer(Xj , Xi)=
1

|Xj |
∑

xj,n∈Xj

min
xi,m∈Xi

‖xj,n−xi,m‖2.

B. Online Clustering
As described in [15], the online clustering algorithm

employed here is designed to work with different baseline
methods (e.g., k-centers, affinity propagation) for which the
definition of a “cluster center” is required. Since we consider
the agglomerative HC method as the baseline with a user-
specified number of clusters, and the classical HC formulation
is not based on the concept of a cluster center, we explicitly
identify the cluster centers using the minimum within-bundle
distance criterion, and we initialize the model parameters of
the clusters the resulting centers represent.

The model of a cluster (with label l) has four parameters:
the cluster center X(l)

c , the number of fiber pathways nl
associated with cluster l, the sum of the dissimilarities
Dl =

∑
i∈F(l) d(X

(l)
i , X

(l)
c ) between all of the nl = |F (l)|

pathways associated with cluster l; and the sum of the squared
dissimilarities Sl =

∑
i∈F(l) d(X

(l)
i , X

(l)
c )2. Following the

initialization of these parameters for each cluster, a new fiber
pathway, X , is compared to the current cluster centers. If the
pathway X is similar to one of the cluster centers, say X(l)

c ,
(i.e., d(X,X

(l)
c )<ξ for some threshold ξ>0), then the label

l is instantly assigned to X and the parameters nl, Dl, and
Sl are updated accordingly. Otherwise, the pathway is added
into a set R called the reservoir.
Conditions to trigger a model update: Since the online
clustering of fiber pathways evolve through time, it is
anticipated that, in some conditions, the parameters of the
cluster models require an update. Here, we define two such
conditions. The first condition is the limited size of R,
i.e., taking action when the reservoir is full. The second
condition is based on an information theoretic approach called
the Page-Hinkley (PH) change point detection test [19], which
can detect a drift in the streaming fibers by considering a
sequence of relevancy information for these fibers.

The relevancy information measure is computed using a
Gaussian distribution model with the first order statistics
of the within-cluster dissimilarities. Let µl and σl be the
mean and standard deviation of the fiber dissimilarities within
cluster l. The relevancy information between a streaming
fiber X and the cluster center X(l)

c is measured, assum-
ing a Gaussian distribution N(µl, σl), as f(X,X

(l)
c ) =

Pr(d(X,X
(l)
c ), N(µl, σl)). For the streaming fiber X ana-

lyzed at time t = 1 -whether a label is assigned to it or
X ∈ R, the relevancy information is computed as p1 =

maxlf(X,X
(l)
c ). As time evolves, a sequence pt is generated

and tested for a drift using the PH test. In particular, let
p1:T = 1

T

∑T
t=1 pt and m1:T =

∑T
t=1(pt − p1:t + δ) with

a tolerance δ > 0. The PH test involves computing MT =
max{|m1:t|; t = 1, 2, . . . , T}, and checking the condition
PHT = (MT −m1:T )>λ, where λ> 0. If this condition
holds, i.e., the stream is drifting, then a model update is
triggered. Note that pt is initialized at the beginning of the
streaming process and reset each time the model is updated.
Model Update: When a model update is triggered (i.e., when
R is full or the PH test detects a drift), the model parameters
are updated by applying an additional HC on the union set
H = R ∪ C, where C = {X(l)

c }Ll=1 is the set of cluster
centers before the update. As a result, the new cluster centers
{X̄(l)

c }Ll=1 are obtained and the parameters are updated as
follows: Let ml be the number of fibers in R associated to
the updated cluster l. Also let X(l)

1,c, X
(l)
2,c, . . . , X

(l)
K,c,K≤L

denote the cluster centers in C associated to the updated
cluster l, and nk,l be the number of the fibers previously
associated to X(l)

k,c. Then the number of fibers nl associated
to the cluster l is equal to ml +

∑K
k=1 nk,l. Since the fibers

that are previously assigned to a cluster are not considered,
Dl and Sl are updated using a random perturbation model,
as described in [15]. As a result, the sum of the squared
distances for the new cluster l is computed as

Sl =

K∑
k=1

(
nk,ld(X

(l)
k,c, X̄

(l)
c )2 + Sk

)
+

ml∑
i=1

d(X
(l)
i,r , X̄

(l)
c )2,

(2)
where Sk is the sum of squared distances from X

(l)
k,c to the

fibers associated to the cluster l before the model update, and
{X(l)

i,r}i is the set of fibers in R associated to the updated
cluster l. Likewise, the sum of the distances is computed as

Dl =

K∑
k=1

(
nk,ld(X

(l)
k,c, X̄

(l)
c )+Dk

)
+

ml∑
i=1

d(X
(l)
i,r , X̄

(l)
c ), (3)

where Dk is the sum of the distances from X
(l)
k,c to the fibers

in cluster l before the update.

III. EXPERIMENTAL RESULTS

We test our method on two phantom and one real datasets.
For HC, we use the hclust function (initialization with average
linkage; model update with single linkage) in MATLAB R©

PRTools library. We heuristically set ξ = {4, 6, 10} for
Phantom1, Phantom2, and real data, respectively, and
keep other settings at default given in [15].
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TABLE I
PERFORMANCE OF THE CLUSTERING METHODS: MEAN AND STANDARD

DEVIATION OF THE CLUSTERING ACCURACY AND COMPUTATION TIME.

Phantom1 Phantom2
Method\Performance Acc. (%) Time (s) Acc. (%) Time (s)
k-centers 98.9±6.9 238.9 99.9±0 376.4
k-AP 99.9±0 463.6 99.9±0 551.7
HC 100±0 604.0 100±0 713.9
online k-centers 60.1±8.9 14.4 83.1±8.2 3.2
online k-AP 72.1±11.5 3.5 72.1±8.5 10.4
online HC 100±0 2.69 92.9±9.1 3.2

A. Experiments on Phantom Data

The proposed clustering strategy is first tested on the
biological phantom in [20], constructed from excised rat
spinal cords and designed to have two crossing fiber bundles.
The diffusion weighted images of the phantom, herein referred
to as Phantom1, were acquired with a 40×9 image matrix
(40 slices with an isotropic spatial resolution of 2.5 mm) and
a diffusion sensitization at b= 1,300 s/mm2 applied along a
set of 90 gradient directions with 10 baseline (b0) images.
Our algorithm is initialized with an homogeneous set of 250
fibers (equal number of fibers from each bundle) and |R| is
set to 50. Fig. 2 shows clustering of 5,000 fiber pathways
(2,500 pathways per bundle, computed using [18]) into two
bundles through time. On the same data, we also compare
our method with alternative techniques such as k-centers
and affinity propagation (k-AP, assuming exactly k clusters)
by repeating the experiment 100 times with shuffled stream
orders. Table I shows the performance of these algorithms
and their online versions in terms of accuracy in clustering
and computation time. Our first observation is that, as one
expects, online clustering is significantly faster than batch
clustering because for the batch methods, computation of the
full dissimilarity matrix is required before clustering, and this
computation takes 238.5 seconds for Phantom1. We also
observe that online HC outperforms both online k-centers and
k-AP in terms of accuracy and computation time, because
k-centers and k-AP are more likely to consider the previous
cluster centers as outliers at the model update step, whereas
HC merges clusters without considering their centers.

Fig. 2. Online hierarchical clustering of the fiber pathways produced by
the method proposed in [18]: Input pathways (left), clustering streams of
pathways (middle), and the final result (right).

We conduct a second experiment on the Neurospin
MR phantom [21] dataset provided for the MICCAI 2009
Fiber Cup [22]. The diffusion MR data of this phantom
(Phantom2) were acquired using the following imaging
parameters: The image matrix is of size 64×64×3 with
isotropic spatial resolution of 3 mm. Two repetitions of 65

images are acquired (1 baseline and 64 diffusion weighted
images at b = 1,500 s/mm2), with TR/TE = 5,000/94
ms. Fig. 3 shows the fiber pathways selected from four
tracts (including three partially overlapping tracts) and their
clustering into bundles using online HC. Table I shows the
accuracy in clustering and computation time for Phantom2
(for the batch methods, computation of the full dissimilarity
matrix takes 376.3 seconds), for which online HC, similar to
the previous experiment, outperforms k-centers and k-AP.

(a) (b) (c)

Fig. 3. (a) Illustration of the Neurospin MR phantom, (b) Extracted fiber
pathways from four selected bundles using streamline tractography, (c)
Clustering result given by online HC.

B. Experiments on Real Data
The proposed algorithm is also evaluated on a human brain

MRI dataset provided for the Pittsburgh Brain Connectivity
Challenge (Spring 2009). We consider the diffusion weighted
images (of the subject brain0), which were acquired with
a 128×128 image matrix, (68 slices with an isotropic spatial
resolution of 2 mm), and a diffusion sensitization at b=1,500
s/mm2 applied along a set of 256 gradient directions with
29 baseline images. First, three different WM fiber bundles
(the corpus callosum, cingulum, and fornix) in Fig. 4 are
reconstructed via streamline tractography [23] initiated from
a spherical seed ROI. Then the resulting 2,940 pathways are
fed, as streams, into the online HC method. The algorithm is
initialized with a homogeneous set of 400 fibers and |R| is
set to 80. Fig. 4 shows the fiber pathways and their successful
clustering into three anatomically distinct bundles. Another
experiment is performed with a relatively large hand-drawn
ROI on an axial slice and 4,262 fiber pathways (Figs. 5(a)-
5(b)) passing through the ROI are selected for clustering. We
again observe that the final clustering (in Fig. 5(c)) given by
online HC is in accordance with the neuroanatomy.

Fig. 4. Online clustering of selected WM fiber pathways (experiment 1):
(a-b) Fiber pathways forming the corpus callosum, cingulum, and fornix
illustrated using (a) directional coloring, and (b) solid coloring; (c) Clustering
of the fiber pathways into three bundles.
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(a) (b) (c)

Fig. 5. Online clustering of selected WM fiber pathways (experiment 2): (a-b) Fiber pathways forming the corpus callosum, cingulum, internal capsule,
superior longitudinal fasciculus, and some U-fibers illustrated using (a) directional coloring, and (b) solid coloring; (c) Clustering of the fiber pathways.

IV. CONCLUSION AND FUTURE WORK

We presented an online agglomerative hierarchical clus-
tering method, which yields a framework similar to doing
“unified tractography and clustering.” We demonstrated the
performance of our method through experiments on phantom
and real dMRI datasets. Compared to conventional HC,
considering sets of fiber pathways as data streams reduces the
overall computation time, because a relatively small pairwise
dissimilarity matrix is computed/analyzed at initialization and
only when the reservoir is full, and the cluster label of an
item is assigned at the time of its creation. Future work will
focus on online clustering of large-scale data (e.g., whole-
brain pathways), and of fibers produced by probabilistic
tractography (e.g., see [24]) to generate WM atlases.

REFERENCES

[1] C. Lenglet, J. Campbell, M. Descoteaux, G. Haro, P. Savadjiev,
D. Wassermann, A. Anwander, R. Deriche, G. Pike, G. Sapiro,
K. Siddiqi, and P. Thompson, “Mathematical methods for diffusion
MRI processing,” NeuroImage, vol. 45, pp. S111–S122, 2009.

[2] D. Jones, Ed., Diffusion MRI: Theory, methods, and applications.
Oxford University Press, 2011.

[3] P. J. Basser, “Inferring microstructural features and physiological state
of tissues from diffusion weighted images,” NMR in Biomedicine, vol. 8,
pp. 333–344, 1995.

[4] D. Tuch, “Q-ball imaging,” Magnetic Resonance in Medicine, vol. 52,
no. 6, pp. 1358–1372, 2004.

[5] I. Aganj, C. Lenglet, G. Sapiro, E. Yacoub, K. Ugurbil, and N. Harel,
“Reconstruction of the orientation distribution function in single- and
multiple-shell q-ball imaging within constant solid angle,” Magnetic
Resonance in Medicine, vol. 64, no. 2, pp. 554–566, 2010.

[6] M. Descoteaux, R. Deriche, T. R. Knösche, and A. Anwander,
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