
  

 

Abstract—A new method, namely fuzzy central tendency 

measure (fCTM) analysis, that could enable measurement of the 

variability of a time series, is presented in this study. Tests on 

simulated data sets show that fCTM is superior to the 

conventional central tendency measure (CTM) in several 

respects, including improved relative consistency and robustness 

to noise. The proposed fCTM method was applied to 

electromyograph (EMG) signals recorded during sustained 

isometric contraction for tracking local muscle fatigue. The 

results showed that the fCTM increased significantly during the 

development of muscle fatigue, and it was more sensitive to the 

fatigue phenomenon than mean frequency (MNF), the most 

commonly-used muscle fatigue indicator. 

I. INTRODUCTION 

Variability analysis can be defined as the comprehensive 
assessment of the degree and characteristics of patterns of 
variation in a time series over time [1]. The central tendency 
measure (CTM) is an important variability analysis measure 
derived from the Poincaré plot. It is defined as the percentage 
of data points which fall within a certain radius from the centre 
of the first difference of Poincaré plot of the original time 
series. CTM has found applications in many biomedical 
engineering areas since it was developed. The CTM of blood 
oxygen saturation (SaO2) signals has been analyzed with 
Limp-Ziv (L-Z) complexity and approximate entropy methods 
as a diagnostic test for obstructive sleep [2, 3]. Both the 
sensitivity and specificity of the CTM method were found to 
be higher than L-Z complexity and approximate entropy, 
which are respectively based on symbol dynamics and the 
regularity of the attractor trajectory. Ramdani et al. examined 
human postural sway velocity time series using CTM to 
quantify the smoothness of the underlying dynamics [4]. The 
results suggested that the CTM of the velocity time series 
significantly reduced with aging, related to increased postural 
muscle response and reflex times, or reduced proprioception. 
Thuraisingham et al. used CTM to depict the degree of 
variability in electroencephalograph (EEG) signals during eye 
open and eye closed states, for the purpose of developing a 
“hands free” brain computer interface [5]. They demonstrated 
increased EEG variability during eye closed compared to eye 
open states. An improved component CTM (CCTM) method 
was also proposed by Thuraisingham to analyze cardiac RR 
intervals [6]. 

 
It counts the number of points present in the four 

quadrants of the difference plot separately. He employed the 
technique to differentiate congestive heart failure patients 
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from normal patients, with a classification success rate of 
100%. The CTM method was also applied to discriminate 
between normal heart rate variability and random rhythm 
generation (RRG) in the ECG of schizophrenic patients [7, 8]. 

Given a time series with N data points, the calculation of 
CTM requires a priori determination of an unknown 
parameter, i.e., the radius r of the circular region in the first 
difference Poincaré plot.  Unfortunately, there is no 
established rule for the selection of the optimal r value. 
Moreover, incorrect choice of r can result in missing 
information due to excluded data. In this paper, we present a 
fuzzy central tendency measure (fCTM) for quantifying time 
series variability. Utilizing the concept of fuzzy sets, 
similarity between first difference plots is fuzzily defined on 
the basis of a fuzzy membership function. The proposed 
fCTM was then applied to EMG analysis for monitoring the 
local muscle fatigue.  

II. METHODS  

A. Fuzzy Central Tendency Measure 

Let the scalar time series 
1 2, , , Nx x x  be generated by a 

dynamical system, where n is the number of samples. We can 

draw scatter plots of first differences of the data which graph 

x(i+2)−x(i + 1) against x(i+1)−x(i), where each x(i) represets 

the time series’ value at time i. These plots, centered around 

the origin, provide a graphical representation of the degree of 

variability in the time series. To quantify this variability, the 

CTM can be obtained from the first differences of the data by 

choosing a circular region of radius r around the origin, 

counting the number of those points which fall within the 

radius, and dividing by the value of total points [9]. A low 

CTM value demonstrates a large amount of dispersion but a 

large value concentration near the centre. Assume a time 

series is with N data points, the CTM can be computed as, 
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     A Heaviside function ( )id is used here to count the points 

in the region. The rigid boundary of the Heaviside function 

can result in some of information loss. For example, when the 

data points are just outside the boundary, i.e. the Euclidian 

distance between x(i+2)−x(i +1) and x(i+1)−x(i) is just larger 

than the radius r, these points are ignored, while the 
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contributions of all data points inside the boundary are 

handled equally. These problems make the calculation of 

CTM brittle and the choice of radius r difficult. The CTM 

value varies dramatically with a slight change in the radius 

value. However, the problem is able to be avoided if the 

Heaviside function in Eq. (3) is replaced by a fuzzy 

membership function. ( , )iu d r  to obtain a fuzzy measurement 

of the “distance” or similarity between x(i+2)−x(i +1) and 

x(i+1)−x(i) based on their shapes. The fuzzy central tendency 

measure can thus defined as follow: 
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In practice, a bell-shape function, sigmoid function, 

Gaussian function, or any other fuzzy membership function 

that is convex and continuous could be selected to substitute 

for the Heaviside function. In this study, we used the 

following Gaussian function for the fCTM calculation,   
2( , ) exp( / ),i iu d r d r                           (5) 

B. Simulated data 

The ability of fCTM to discriminate among different 
degrees of variability was evaluated on several benchmark 
data sets. These time series included independent, identically 
distributed (i.i.d.) Gaussian noise, a chirp signal, MIX 
processes [10], and Logistic map. The simulation of N points 
MIX(P) process, where P is between 0 and 1, is a sine wave, 
where N P randomly selected points have been substituted 

for random noise [10]. The Logistic map is defined by [11] 

1 (1 ).i i ix Rx x                                    (6) 

where R is a control parameter. Data were generated for 
R=3.5, 3.6, and 3.9. The characteristics of time series for 
R=3.5 is periodic (period four) dynamics, R=3.6 and 3.9 
produce chaotic dynamics with increasing variability. 

C. EMG data 

The EMG has been often applied to monitor muscular 

changes [12]. EMG signals used in this paper were detected 

from human biceps muscle during static voluntary isometric 

contractions in twelve healthy subjects (mean 

age std: 30.2 4.9 years). No subjects had any neuro- 

musculoskeletal disorders and all signed informed consent 

prior to the experimental testing. A pair of surface EMG 

electrodes (Axon Systems, Inc., New York, USA) with 25 mm 

centres distance was put longitudinally on abrased, clean skin, 

immediately under the thickest point of the biceps. The 

reference electrode was put on the proximal head of the ulna. 

In the testing, the subject first executed an elbow flexion 

against the lever arm to 80% of his/her maximal voluntary 

contraction (MVC) and maintained this value through visual 

feedback of the torque showing on the screen. The experiment 

was stopped when the torque was decreased to approximately 

70% of the MVC, indicating the muscle transfers form normal 

to fatigue state. The amplified rate was 1000 with a 10–400 

Hz band-pass filter. Signals from the EMG electrodes were 

sampled at 1 KHz and digitally stored for further analysis. 

III. RESULTS 

A.  Relative consistency and monotonicity 

An important feature of variability measures is the relative 

consistency, which means if one attractor is smoother than 

another, then it should process a larger fCTM value for all 

evaluated conditions. Graphically, curves of fCTM versus r 

for various series should not cross over each another. This 

expectancy was first assessed by using the realizations of the 

MIX(P) process, where the degree of variability could be 

specified. The scheme was to compare MIX(0.4), MIX(0.6), 

and MIX(0.8) series. The anticipant result was that 

fCTM(MIX(0.6)) should be less than fCTM(MIX(0.4)), 

whilst fCTM(MIX(0.8)) should be less than fCTM 

(MIX(0.6)). Fig. 1 shows the simulted results with 100-point 

realizations of the MIX(P) process for fCTM and 

conventional CTM. Apparently, for each tolerance value r, the 

fCTM of MIX(0.6) was notably and strictly lower than that of 

MIX(0.4), whilst MIX(0.8) was lower than MIX(0.6). These 

results illustrated the relative consistency of fCTM in the 

simulation. However for CTM, the plots of MIX(0.4) and 

MIX(0.6) cross over, which demonstrates the lack of relative 

consistency of CTM in the evaluation.   
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     Figure 1. The performances of fCTM (a), and CTM (b) statistics that 

quantify the variability of MIX(0.4) (solid), MIX(0.6) (long dash) and 

MIX(0.8) (short dash) for N=100. 

 

Gaussian noise and chirp signals are often used to compare 

the performance of different nonlinear measures on relative 

consistency [13]. We also assessed the performance of fCTM 

using these signals. Fig. 2 shows the results of fCTM and 

CTM with 200-point realizations of each. The poor results of 

CTM shown in Fig. 2(b) were similar to approximate entropy  

in Xie el al. [13], i.e., the variability value of CTM for the 

chirp signal was less than the white noise signal when r is 

greater than about 1.5. However, the fCTM was able to 

differentiate the variability between the series pair correctly 

and with relative consistency. We also found that the values of 

fCTM monotonically increased as r increased for the different 

signals in Figs. 1 and 2. However, the CTM of chirp signal 

often abruptly increased or oscillated as r increases. The loss 

of monotonicity in the CTM caused the difficulty of 

interpreting signal variability, reducing its differentiation 

capability. 
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Figure 2. The performances of fCTM (a), and CTM (b) statistics that quantify 
the variability of a chirp signal (solid) and Gaussian noise (long dash) for 
N=200. 

B. Robustness to noise 

We also assessed the performance of fCTM against noise 

corruption, which is an important feature for real-life 

applications to noisy signals. This property of both fCTM and 

conventional CTM was evaluated by using Logistic maps with 

three different R values. New time series were obtained by 

superimposing i.i.d. Gaussian white noise with different noise 

levels (NL) into clean Logistic series. 
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Figure 3. The performances of fCTM (a), and CTM (b) in distinguishing 

Logistic maps with R=3.5 (solid), 3.6 (long dash), and 3.9 (short dash) at a 

noise level of 0.1 and N= 500. 

    

For each map, the statistics of both fCTM and CTM were 

obtained for time series with various lengths as r ranging from 

0.01 to 2. The smoother map produces larger variability 

values, which are true for both fCTM and conventional CTM 

if N and r are large enough.  However, when N and r were 

decreased, the variability measured by CTM became skewed, 

with results even worse when the series were contaminated by 

noise. Fig. 3 shows variability values for Logistic maps 

contaminated with noise (NL = 0.1). The series length was N 

=500 in the calculations. It was found that fCTM distinguished 

Logistic maps with three different R values over the whole 

range of r changed from 0.01 to 1 in steps of 0.01. However, 

CTM could only distinguish the maps with R=3.6 and 3.9 for r 

ranging from 0.1 to about 0.5. Fig. 4 shows the performances 

of the two variability statistics in distinguishing Logistic maps 

at various noise levels (r=0.2). fCTM could accurately 

differentiate between the Logistic series with various control 

parameters R even the NL increased to 0.5. Unfortunately, it 

was hard for CTM to differentiate between Logistic maps with 

R=3.6 and 3.9 corrupted by noise for r = 0.2 and N=500. Thus, 

fCTM exhibited better robustness to noise in differentiating 

various dynamic behaviors. 
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Figure 4. The noise performances of fCTM (a), and CTM (b) statistics in 

distinguishing Logistic maps with R=3.5 (star), 3.6 (cross), and 3.9 (circle) at 

r=0.2 and N= 500. 

C. Results on EMG signal 

To indicate the effectiveness of the proposed technique, 

fCTM and CTM of EMG signals were evaluated as indicators 

of human muscle fatigue during sustained isometric 

contraction. The EMG is the electrical manifestation of motor 

unit activities associated with muscle contraction. The 

reduced variation between slow and fast twitching motor units 

and the synchronized firing imply that the variability of the 

EMG signal decreases as the muscle transitions from the 

normal to the fatigue state. It is thus deduced that values for 

both fCTM and CTM increase with the development of 

muscle fatigue.   
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Figure. 5 Time courses of fCTM (circle) and CTM (star) for the EMG of 

subject 3. The window width was 500 ms. 

 

In order to track the changes in fCTM and CTM of EMG 

over time, we segmented the EMG signal into consecutive 500 

ms epochs with 50% overlapped rate. For every epoch, the 

EMG signal was normalized and a value for fCTM and CTM 

was obtained based on Equations (1) and (4), respectively. 

Fig. 5 shows the time courses of the two measures for subject 

3. It can be observed that the fCTM increased significantly 

during the development of muscle fatigue. Unfortunately, 
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most values of CTM for different EMG epochs were near 

zero. CTM was not able to detect the small pattern changes in 

EMG signals recorded from normal to fatigue. The fCTM 

analysis from all the other subjects was similar to the results 

shown in Fig. 5, demonstrating that the EMG fCTM could be 

used as a new indicator of muscle fatigue. 

 
Table 1. Linear regression slope of fCTM and MNF for each subject. All 

slope values are in units of 1s  

subject fCTM MNF 

1 0.0126 -0.0094 

2 0.0068 -0.0055 

3 0.0066 -0.0056 

4 0.0070 -0.0052 

5 0.0067 -0.0048 

6 0.0065 -0.0037 

7 0.0060 -0.0042 

8 0.0050 -0.0038 

9 0.0059 -0.0042 

10 0.0073 -0.0050 

11 0.0049 -0.0038 

12 0.0086 -0.0066 

Mean std  0.0070 0.0021  0.0052 0.0015   

 

To date, mean frequency (MNF) has been hailed as the 

gold standard for muscle fatigue assessment by using EMG 

under ‘static’ conditions. The slope of the linear regression 

has used as a primary quantitative fatigue index [12, 14]. In 

order to further evaluate the applicability of the fCTM statistic 

for muscle fatigue monitoring, the MNF of our EMG signals 

was also obtained for comparison, where we observed a 

time-decrease trend of the MNF. To facilitate comparison, the 

fCTM and MNF were normalized by their respective first 

epoch values, and a least-square error linear regression was 

then fitted to each over the period of muscle contraction to 

obtain the slope. Table. 1 gives the time-regression slopes of 

fCTM and MNF for each subject. One-way ANOVA was 

performed to test the statistical significance of the results. The 

slope of fCTM was significantly higher than the absolute 

value of MNF ( 0.0213p  ). These results suggest that fCTM 

is better than MNF in detecting muscle fatigue, since the 

higher slope indicates that the index is more sensitive to the 

fatigue effect. 

IV. DISCUSSION AND CONCLUSIONS 

We have presented a new variability analysis method, the 
fuzzy central tendency measure. fCTM implements a new rule 
for determining first order differences similarity in CTM. As 
opposed to the discontinuous and hard boundary of a 
Heaviside function in CTM, the continuous  and soft boundary 
of fuzzy membership functions make the fCTM statistic 
change smoothly when the radius r is slightly increased. In 
addition, the fCTM also shows better relative consistency and 
is more robust to noise. When fCTM was applied to 
characterize the variability in EMG signals, it increased 
significantly and was more sensitive to muscle fatigue than 
MNF. It can be applied to sports medicine, rehabilitation 

engineering, and other biomedical-related areas as an 
alternative measure of local muscle fatigue. 
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