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Abstract— The vestibulo-ocular reflex (VOR) is a well-known
dual mode bifurcating system that consists of slow and fast
modes associated with nystagmus and saccade, respectively.
Estimation of continuous-time parameters of nystagmus and
saccade models are known to be sensitive to estimation
methodology, noise and sampling rate. The stable and accurate
estimation of these parameters are critical for accurate disease
modelling, clinical diagnosis, robotic control strategies, mission
planning for space exploration and pilot safety, etc.

This paper presents a novel indirect system identification
method for the estimation of continuous-time parameters of
VOR employing standardised least-squares with dual sampling
rates in a sparse structure. This approach permits the stable and
simultaneous estimation of both nystagmus and saccade data.
The efficacy of this approach is demonstrated via simulation
of a continuous-time model of VOR with typical parameters
found in clinical studies and in the presence of output additive
noise.

I. INTRODUCTION

The eyes play a critical role in maintaining balance. They
are directly connected to organs of equilibrium, most im-
portantly the inner ear. Paired structures called semicircular
canals behind the ears sense motion and relay information to
balance control centres in the brain. Health of the semicircu-
lar canals can be monitored by studying the vestibulo-ocular
reflex (VOR). The VOR is a reflexive eye movement that
stabilises images on the retina during head movement. Ocular
responses to head perturbations consist of intermingled seg-
ments classified as “slow” (nystagmus) or “fast” (saccade),
according to their average speed characteristics. Changes in
VOR activity can be an indication of serious brain or head
trauma, which can negatively impact an astronaut or pilot’s
ability to successfully achieve critical mission objectives.

NASA’s Advanced Exploration Systems and Human Re-
search Programs are critically interested in pioneering new
capabilities allowing future human missions beyond Earth
orbit [1], [2]. The objective quantification of mechanisms
that control VOR will enhance the capabilities of NASA’s
human exploration missions by developing techniques that
permit prediction of spatial disorientation and development
of individualised countermeasures for astronaut crews that
must perform critical space operations under varied gravito-
inertial conditions such as launch, landing and orbital ma-
neuvering [3].
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It has been shown that the VOR can be accurately mod-
elled by the NARMAX (Non-linear AutoRegressive, Moving
Average eXogenous) structure [4]. Moreover, a modified
extended least-squares (MELS) algorithm was developed to
estimate unbiased parameter values of non-linear Hammer-
stein structure multimode systems. This two-step process
adds overhead to data analysis, which can be significant for
sufficiently long data records and batch processing. However,
it can be reduced to one step by exploiting the nature and
efficiency of sparse matrices.

Recently, it was demonstrated that the utilisation of a
sparse matrix approach is ideally suited for system identi-
fication of switched systems with application to the VOR
[5]. This study demonstrated that a sparse matrix approach
is an efficient technique for the simultaneous analysis of
nystagmus and saccade dynamics. However, several ques-
tions remain unsolved in this modelling and identification
approach.

The problem of continuous-time system identification
from sampled input-output data can be divided into two
broad approaches: (i) indirect methods, where a discrete-time
model is estimated from sampled data; then an equivalent
continuous-time model is calculated and (ii) direct methods,
where a continuous-time model is obtained directly without
going through the intermediate step of first determining
a discrete-time model; based on concepts of approximate
numerical integration to recreate time-derivatives needed in
continuous-time formulations [6].

We propose to investigate the problem of continuous-time
system identification by developing methodology using an
indirect approach. One such approach relies on matrix pre-
conditioning techniques, such as standardised least-squares,
to improve the spectral properties of the regressor matrix [7],
[8]. Often when the clustered spectrum is away from zero
it results in rapid and robust convergence, especially when
the preconditioned matrix is close to normal. We deem this
will provide more robust solutions and greater consistency
for non-linear biological systems by circumventing issues
of implementing numerical derivatives and filter selection
required by direct techniques, which are more challenging
in a non-linear framework. Here, we focus on one critical
issue, namely, that of mapping the underlying continuous-
time system to discrete-time for estimation, then inverse
mapping back to continuous-time to provide physiological
relevance and insight.

The identification of continuous-time VOR parameters is
further challenged due to the slow and fast speed character-
istics of the system. This corresponds to one pole close to
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the jω-axis in continuous-time or the unit circle in discrete-
time whilst the other pole is located significantly inside the
left hand plane/unit circle. To avoid aliasing of the fast mode,
the system is typically oversampled 5 to 10 times the highest
known dynamics. This results in the slow mode moving close
to the unit circle as the sampling interval approaches zero,
leading to numerical instability for parameter estimation. To
avoid the numerical instability problem we propose using a
dual sampling rate technique and, thus, permitting stable and
robust continuous-time parameter estimation.

The organisation of this paper is as follows. In §II we
formulate the identification problem addressed here. Section
III introduces a dual sampling rate, standardised least-squares
method in a sparse structure, which permits stable indirect
estimation of continuous-time VOR parameters. This sparse
matrix formulation is capable of simultaneously quantifying
both nystagmus and saccade data. Section IV provides results
of the proposed algorithm on a simulated VOR model
whilst §V provides a discussion of our findings. Section VI
summarises the conclusions of our study.

II. PROBLEM STATEMENT

Consider the continuous-time VOR system illustrated in
Fig. 1 and characterised by Eqn. 1 as
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Fig. 1. System describing vestibular dynamics. Switch position S1:
nystagmus. Switch position S2: saccade.

f l(·) = a+bu(n)+ cu2(n)+du3(n), (1)

Y1(s) =
K1

τ1s+1
X1(s)+

τ1y1(ti)
τ1s+1

=
G1

s+ p1
X1(s)+

y1(ti)
s+ p1

; i = 1, · · · ,q,
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K2
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X2(s)+

τ2y2(t`)
τ2s+1

=
G2

s+ p2
X2(s)+

y2(t`)
s+ p2

; `= 1, · · · ,r

where Y1(s) and Y2(s) are first-order dynamics for slow and
fast-phase modes, y1(ti) and y2(t`) represent the initial values
at each switch time and q,r are the number of switches [4],
[5]. It has been demonstrated that a NARMAX description

of VOR slow and fast-phases is [4]

y(n) =

{
y1(n) Dynamic Mode S1
y2(n) Dynamic Mode S2

(2)

y1(n) = β1 +β2y1(n−1)+β3[u(n)+u(n−1)]
+ β4[u2(n)+u2(n−1)]+β5[u3(n)+u3(n−1)]
+ κ1δ11(n− j)+ · · ·+κiδ1i(n− ji); i = 1, · · · ,q

y2(n) = ϑ1 +ϑ2y2(n−1)+ϑ3[u(n)+u(n−1)]
+ ϑ4[u2(n)+u2(n−1)]+ϑ5[u3(n)+u3(n−1)]
+ λ1δ11(n− k)+ · · ·+λ`δ1`(n− k`); `= 1, · · · ,r

where δ is the Kronecker impulse function, j,k are the
lags on the δ1ith and δ2`th impulse where the lag times are
assumed known and q,r are the number of data segments
of sub-system one and two, respectively. The unknown
model parameters are compactly represented as θ 1,2, =
[β1,ϑ1 β2,ϑ2 β3,ϑ3 β4,ϑ4 β5,ϑ5 κ1,λ1 · · ·κi,λ`]

T .
Table I illustrates the relationship of the discrete-time

(DT) parameters in Eqn. 2 to the underlying continuous-
time (CT) parameters in Eqn. 1 and their inverse. Notice

TABLE I
(LEFT) FORWARD AND (RIGHT) INVERSE RELATIONSHIP OF NARMAX

MODEL PARAMETERS TO UNDERLYING CONTINUOUS-TIME

PARAMETERS.
DT Coefficient CT Relationship CT Coefficient DT Relationship

β1,ϑ1
(2G1,2aT )
2+p1,2T τ1,2

−(β2,ϑ2)T−T
−2+2(β2 ,ϑ2)

β2,ϑ2
−(−2+p1,2T )

2+p1,2T G1,2a 2(β1 ,ϑ1)
(β2 ,ϑ2)T+T

β3,ϑ3
(G1,2bT )
2+p1,2T G1,2ub 4(β3 ,ϑ3)

(β2 ,ϑ2)T+T

β4,ϑ4
(G1,2cT )
2+p1,2T G1,2c 4(β4 ,ϑ4)

(β2 ,ϑ2)T+T

β5,ϑ5
(G1,2dT )
2+p1,2T G1,2d 4(β5 ,ϑ5)

(β2 ,ϑ2)T+T

κi,λ`
(Ty1,2(ti,`))

2+p1,2T

that the estimated overall gain is a product of the linear
system and static non-linearity gain. Clearly, the system and
its parameter mapping in the forward and inverse direction
are non-linear and governed by z = (2+T s)

(2−T s) and s = 2
T

(z−1)
(z+1)

where T is the sampling interval.
Given this framework, the goal is to estimate the NAR-

MAX model parameters as

min
θ 1,2

1
2

∥∥(Z1,2−φ1,2θ 1,2
)∥∥2

2 (3)

where Z1,2 ∈ RN×1 is a vector of outputs, φ 1,2 ∈ RN×p is a
matrix of regressors and θ 1,2, ∈Rp×1 is a vector of unknown
coefficients. Using the estimate θ1,2 and the relationship
on the RHS of Table I we calculate the continuous-time
VOR parameters. This approach is known as indirect system
identification of continuous-time parameters.

In addition, notice the expression in Eqn. 3 is a non-sparse
matrix approach, requiring both fast and slow-phase to be
analysed separately. However, using a sparse matrix approach
by constructing a diagonal block-oriented data matrix and
exploiting its natural sparseness as[

Z1
Z2

]
=

[
φ 1 0
0 φ 2

][
θ 1
θ 2

]
(4)
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it is possible to simultaneously estimate both nystagmus and
saccade parameters.

III. STANDARDISED LEAST-SQUARES WITH
DUAL SAMPLING

In a clinical setting the VOR is appropriately sampled
taking into consideration fast-phase dynamics. However, a
suitable sampling rate for saccade results in slow-phase
dynamics being highly oversampled. Although it is desirable
to oversample system dynamics to avoid aliasing, too high
a sampling rate can lead to numerical instability in system
identification resulting in biased estimates [9], [10]. To avoid
numerical instability we propose using a dual sampling rate
approach to analyse both modes of VOR. This dual sampling
rate method is easily achieved by modifying the sparse
structure in Eqn. 4 as[

Z∗1
Z2

]
=

[
φ
∗
1 0

0 φ 2

][
θ 1
θ 2

]
(5)

where the superscript “*” denotes that the nystagmus signal
has been down sampled to achieve better numerical results.
Here, we assume that the fast mode has been appropriately
sampled and does not need to be down sampled since the
user has control over the sampling rate. However, this result
is easily generalisable allowing both signals to be analysed
at appropriately down sampled rates.

In many non-linear systems there are large numerical
differences of the regressors due to the basis function(s)
used to estimate the static map. The large differences lead
to the regressor matrix being ill-conditioned and results in
unstable matrix inversion and poor parameter estimates [11].
To alleviate ill-conditioning we propose using standardised
least-squares (SLS) in combination with the dual sampling
approach proposed in Eqn. 5.

Given a matrix of independent variables φ and of depen-
dent variables Z compute the mean and standard deviation
of each variable, and replace φ and Z with the centred and
standardised variate as

φ̃ =
(

φ −µφ

)
Σ
−1
φ

and Z̃ = (Z−µZ)Σ
−1
Z (6)

where Σφ is a diagonal matrix of standard deviations with
Σφk denoting the standard deviation of the kth column of φ

and µφ is a matrix who’s kth column has all entries equal to
the mean of column k of φ . Substituting Eqn. 6 into 5 yields
a dual sampling rate SLS formulation in a sparse structure.[

Z̃∗1
Z̃2

]
=

[
φ̃
∗
1 0

0 φ̃ 2

][
θ̃ 1

θ̃ 2

]
(7)

In the sequel we use the formulation in Eqn. 7 to estimate
continuous-time parameters of nystagmus and saccade dy-
namics.

IV. SIMULATIONS & RESULTS

The accuracy of the dual sampling rate SLS technique with
sparsity was validated by simulating a continuous-time VOR
model (e.g. Fig. 1) using Simulink. The parameters used in

TABLE II
LEFT: CONTINUOUS-TIME COEFFICIENT VALUES. τ1 : SLOW-PHASE

TIME-CONSTANT, τ2 : FAST-PHASE TIME-CONSTANT, K1 : SLOW-PHASE

GAIN, K2 : FAST-PHASE GAIN AND T: SAMPLING INTERVAL. RIGHT:
COEFFICIENT VALUES OF STATIC NON-LINEARITY. b: LINEAR TERM, c:

SQUARED TERM AND d CUBIC TERM.

CT System Coeff. Value CT NL Coeff. Value
τ1 15.0 s
τ2 50.0 ms b 1.20
K1 -9.43 c -3.00×10−3

K2 0.222 d -1.50×10−5

T 1.00 ×10−2 s

the simulation are shown in Table II and representative of
typical values found in experiments [4].

One hundred Monte-Carlo simulations were generated in
which the input-output realisation was the same but had a
unique Gaussian white, zero-mean, noise sequence added to
the output. Excluding the noise free (NF) case the signal-
to-noise ratio (SNR) of the noise sequence was decreased
from 20− 0 dB in increments of 5 dB. The system was
perturbed using a sinusoid input (1/6 Hz frequency and 188
deg/s amplitude). A sinusoid input was used because it is
the type of perturbation used in clinical settings. The system
input-output was sampled at 100 Hz.

The system parameters were estimated as outlined in
Eqns. 4-7. Specifically, for each input-output realisation, we
analysed the VOR model as follows:

1) Single Sampling Rate, Non-Standardised Least-
Squares: Both VOR modes were analysed using a
single sampling rate and identified simultaneously
using a sparse structure using traditional least-squares
(Eqn. 4),

2) Dual Sampling Rate, Non-Standardised Least-Squares:
fast-phase was sampled at the original rate (100 Hz)
whilst slow-phase was down sampled by 10 (10 Hz)
and identified simultaneously using a sparse structure
using traditional least-squares (Eqn. 5),

3) Dual Sampling Rate, Standardised Least-Squares: fast-
phase was sampled at the original rate (100 Hz) whilst
slow-phase was down sampled by 10 (10 Hz) and
identified simultaneously using a sparse structure using
SLS (Eqn. 7).

The continuous-time parameters of slow and fast-phase dy-
namics were estimated using the theoretical relationships
in Table I. Notice that we consider the linear system to
have unity gain and translate the overall gain onto the
polynomial basis function giving an estimate as a product
of the linear system and static non-linearity gain. This is
necessary because it is impossible to measure the signal at
the output of the static non-linearity. Therefore, we deem
that the best estimate of the linear system gain is a product
of the linear system gain and linear coefficient of the static
non-linearity, i.e. G1,2b.

The results of this study are shown in Fig.2. The panels of
the left column illustrate our findings for a non-standardised
(traditional) least-squares approach using a single sampling
rate to analyse both modes. The results show the nystagmus
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Fig. 2. Left column: Single Sampling Rate, Non-Standardised Least-
Squares. Centre column: Dual Sampling Rate, Non-Standardised Least-
Squares (100 & 10 Hz). Right Column: Dual Sampling Rate, Standardised
Least-Squares (100 & 10 Hz). Ordinate: STD about mean. Abscissa: Output
SNR = NF, 20, 15, 10, 5, 0 dB, where NF denotes noise free case. (Note that
the abscissa is shown in decreasing SNR which corresponds to increasing
noise amplitude.)

time constant is significantly biased with large variance
whilst the nystagmus gain and saccade parameters are as
theoretically expected with increasing bias and variance for
decreasing SNR. The centre column displays the results of
using a dual sampling rate with a non-standardised least-
squares technique. The panels show this method improves
bias and variance estimates for decreasing SNR since it
yields theoretically expected trends. However, the non-
monotonic increase in variance for the slow-phase time
constant (e.g. 10-0 dB) suggests that the regressor matrix
tends to becomes ill-conditioned for decreasing SNR. The
right column displays the results of using a dual sampling
rate with a standardised least-squares approach. These results
demonstrate that a dual sampling rate approach in combi-
nation with SLS significantly improves bias and variance
estimates to expected trends. Nevertheless, the bias and
variance of the slow phase gain increase with dual sampling
rate and standardisation. This result is expected since in
these two cases the gain parameter is estimated with 10
times less data. Hence, using SLS the slow-phase variance
monotonically increases for decreasing SNR and agrees with
theoretically expected results.

V. DISCUSSION

Simulation results presented in §IV demonstrate that a
dual sampling rate approach provides improved results to
single sampling rate techniques. In addition, when combined
with preconditioning offered by SLS, estimates are further

improved. Hence, our dual sampling rate SLS technique is
a robust and easily applicable methodology for the analysis
of VOR dynamics.

In many continuous and discrete-time parameter estima-
tion problems the estimates may have incorrect sign due to
high variance, possibly due to numerical ill-conditioning.
Our proposed technique alleviates this problem by using
matrix preconditioning (compare Fig.2 (a)-(b) with (c)). This
result may have general applicability for many estimation
problems in biology such as for the analysis of ankle
dynamics [12].

The central problem with VOR analysis is due to its
time-constants (or poles) being separated by many orders
of magnitude. In our example with a clinically relevant
parameter set, the system poles are separated by 30 orders
of magnitude, which yields in slow-phase being highly
oversampled and leading to numerical instability.

The approach presented here is generalisable to most bifur-
cating systems since they have poles that are typically several
orders of magnitude apart, resulting in highly oversampled
dynamics and unstable parameter estimates.

VI. CONCLUSIONS

The results demonstrate that our dual sampling rate SLS
approach with sparsity is a robust and easily implementable
technique for the analysis or VOR data. These results suggest
that clinical analysis of nystagmus (and saccade) may be
improved, providing clinicians more accurate information
for diagnosis, disease modelling, etc. In addition, the robust
estimation of VOR may lead to improved mission planning
for astronauts and test-pilots of advanced aircraft.
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