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Abstract— Two simple algorithms for supraventricular 

(SVEB) and ventricular ectopic beat (VEB) detection using the 

electrocardiogram (ECG) are presented. Both algorithms use 

time-domain features and a linear classifier. The first algorithm 

requires QRS detection only and the second algorithm requires 

P, QRS and T wave segmentation. Data was obtained from the 

44 non-pacemaker recordings of the MIT-BIH arrhythmia 

database and contained approximately 100,000 beats. 

Performance assessment of the best system resulted in an 

accuracy of 94.4% when discriminating SVEB from non-SVEBs 

and 97.8% in discriminating VEB from non-VEBs.  

I. INTRODUCTION 

Detection of nonlife threatening arrhythmias is an 
important area of study as many of these arrhythmias may 
require therapy to prevent further problems. Sensing of these 
arrhythmias can be achieved using the low cost, non-invasive 
electrocardiogram (ECG). It is an effective test for 
arrhythmia analysis and has become the standard diagnostic 
tool. Some arrhythmias appear infrequently and up to a 
month of ECG activity may need to be recorded using a 
Holter ECG monitor to successfully capture them. Many 
arrhythmias manifest as sequences of heart-beats with 
unusual timing or ECG morphology. An important step 
towards identifying an arrhythmia is the classification of 
heart-beats. The rhythm of the ECG signal can then be 
determined by knowing the classification of consecutive 
heart-beats in the signal [1]. Manual annotation of beat-types 
of multiday of ECG recordings is time consuming so any 
automated processing of the ECG that labels beat-types is of 
assistance to clinician and is the focus of this study. 

Research into this heartbeat classification has been an 
active area for many years and resulted in numerous 
publications e.g. [4]-[15]. A variety of approaches have been 
considered by other researchers. Discriminating features for 
separating the heartbeat classes have included Hermite 
functions [2],[5],[9], statistical features [5],[13], waveform 
morphology  [4],[6],[8],[11]-[15] and wavelets [7],[10],[15]. 
Classification methods include artificial neural networks 
[9],[10], decision trees [6], linear disciminants 
[4],[8],[11],[14],  self organizing feature maps [2], support 
vector machines [5],[7],[15] and other statistically motivated 
approaches  [12],[13]. 

Approaches using wavelets, statistical features, artificial 
neural networks and support vector machines are expensive 
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from a computational viewpoint. The purpose of this study 
was to investigate low computational cost algorithms using a 
single ECG lead that maybe suitable for real-time 
implementation on power limited devices such as Holter 
ECG recorders. 

II. METHODS 

A. Data 

Data from the MIT-BIH arrhythmia database [16] was 
used in this study. The database contains 48 recordings each 
containing two ECG lead signals (denoted lead A and B). 
For this study we focused on using lead A only. In 45 
recordings lead A is modified lead II and for the other three 
is lead V5. Following AAMI recommended practice 
[17],[18] the four paced beat recordings were removed from 
the analysis. 

The data is band-pass filtered at 0.1-100Hz and sampled 
at 360Hz. There are over 109,000 labeled ventricular beats 
from 15 different heart-beat types which were remapped to 
the five AAMI heart-beat classes [17], [18] using the 
mapping in [4]. Class N contained beats originating in the 
sinus node (normal and bundle branch block beat types), 
class S contained supraventricular ectopic beats (SVEB), 
class V contained ventricular ectopic beats (VEB), class F 
contained beats that result from fusing normal and VEBs, 
and class Q contained unknown beats including paced beats. 

B. Data Processing 

Fig. 1 shows an automated system suitable for heartbeat 
classification arising from this project. There are three 
stages: a pre-processing stage, a processing stage, and a 
classification stage. The system processes a single lead ECG 
signal and assigns each heartbeat to one of the five AAMI 
beat classes.  

The pre-processing stage receives a digital ECG signal 
and removes artifact signals from the ECG signal by 
applying a filtering unit. Artifact signals include high 
frequency noise, power line interference and baseline 
wander. Filters for these stages are described in [4]. The 
processing stage consists of heartbeat detection and feature 
extraction phases. The heartbeat detection module aims to 
locate all heartbeats. In this study the manually verified 
heartbeat fiducial point times provided with the MIT-BIH 
arrhythmia database were utilised. Heartbeat segmentation 
follows heartbeat detection to provide the QRS onset and 
offset and T-wave offset times; a Boolean value indicating 
the presence/absence of a P-wave and, if present, the P-wave 
onset and offset time for each heartbeat fiducial point. 

Detection of supraventricular and ventricular ectopic beats using a 

single lead ECG 

Philip de Chazal, Member, IEEE 

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 45



  

For each heartbeat the feature extraction phase forms a 
feature vector that is processed by the classifier stage. In 
response to the input feature vector, the classification stage 
selects one of the required classes. The classifier contains 
parameters that are set during the system development to 
optimise the classification performance. The feature 
extraction phase and the classification stage are discussed in 
more detail below. 

B. Feature extraction 

The ECG heart-beat segmentation program of Laguna et 
al

1
 was used to provide estimates of heart-beat segmentation 

points i.e. the QRS onset and offset and T-wave offset times; 
a Boolean value indicating the presence/absence of a P-wave 
and, if present, the P-wave onset and offset time for each 
heart-beat fiducial point. The program has been validated on 
the CSE multilead database [19] and the MIT-BIH QT 
database [20] and the accuracy of the system in determining 

 
1“ecgpuwave”: see http://www.physionet.org/physiotools/software-

index.shtml 

heart-beat segmentation points was comparable with the 
inter-expert variation. 

Feature extraction is based on the methods employed in 
[4]. Features relating to fiducial point intervals, heart beat 
intervals and ECG morphology were calculated for each 
heartbeat. Table I lists the features used in this study. 

1) RR-interval features 

Heartbeat fiducial point intervals (henceforth called RR-
intervals) were defined as the interval between successive 
heartbeat fiducial points (the time interval between 
successive major local extrema). Four features (Table IA: 
RR-intervals) were extracted from the RR sequence. The 
pre-RR-interval was the RR-interval between a given 
heartbeat and the previous heartbeat. The post-RR-interval 
was the RR-interval between a given heartbeat and the 
following heartbeat. The average RR-interval was the mean 
of the valid RR-intervals for a recording and had the same 
value for all heartbeats in a recording. Finally, the local 
average RR-interval was determined by averaging the valid 
RR-intervals of the ten RR-intervals surrounding a heartbeat.  
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Figure 1: Schematic representation of the automated processing of the single lead ECG for classification of heart-beats. 

TABLE I. THE A) FEATURES GROUPS AND B) FEATURE SETS CONSIDERED IN THIS STUDY.  

 

 Group Label Features Group Label Features 

 

 

 

 

 

 

A) 

    

RR intervals 

 

x Pre-RR interval 

x Post-RR interval 

x Average RR-interval  

x Local avg. RR-interval 

 

Segmented 

Morphology 

 

x ECG morphology (10 samples) between QRS onset and 

QRS offset  

x ECG morphology (9 samples) between QRS offset and 

T-wave offset  

    

Heart-beat 

intervals  

 

 

x QRS duration (QRS offset -QRS onset) 

x T-wave duration (T-wave offset - QRS 

offset)  

x P wave flag  

 

Fixed Interval 

Morphology 

 

x ECG morphology (10 samples) between FP-50ms to 

FP+100ms 

x ECG morphology (9 samples) between between FP-

150ms to FP+500ms 

 

 

 

 Feature Set Feature Groups      Number of Features 

B) FS1 RR intervals, Heart-beat intervals, Segmented Morphology 26 

 FS2 RR intervals, Fixed Interval Morphology 22 
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1) Heartbeat interval features 

Three features per ECG lead (Table IA: Heartbeat 
interval) relating to heartbeat intervals were calculated after 
heartbeat segmentation. The QRS duration was the time 
interval between the QRS onset and the QRS offset. The T-
wave duration was defined as the time interval between the 
QRS offset and the T-wave offset. The third feature was a 
Boolean variable indicating the presence or absence of a P-
wave. 

2) Segmented morphology features  

The segmented morphology group (Table IA: Segment 
Morphology) contained amplitude values of the ECG signal 
determined by a sampling window between the QRS onset 
and offset and a sampling window between the QRS offset 
and the T-wave offset points. Ten features were derived by 
uniformly sampling the ECG amplitude in the first window 
and nine features were derived by uniformly sampling the 
second window (Figure 2a). 

3) Fixed interval morphology features  

The segmented morphology group (Table IA: Segment 
Morphology) contained amplitude values of the ECG signal 
determined by a sampling window between the QRS onset 
and offset and a sampling window between the QRS offset 
and the T-wave offset points. Ten features were derived by 
uniformly sampling the ECG amplitude in the first window 
and nine features were derived by uniformly sampling the 
second window (Figure 2b). 

C. Feature sets 

Two feature set were considered (see Table 1B). The first 

feature set (FS1) required P, QRS and T wave segmentation 

followed by wave morphology sampling. While the second 

(FS2) required QRS detection followed by wave morphology 

sampling. FS2 required significantly less computation than 

FS1. 

D.  Classifier 

Classifier models based on linear discriminants (LD) 
were utilised throughout this study. The model parameters 

k
� - class conditional mean vectors and�  - common 

covariance matrix were determined using the training data 
using ‘plug-in’ maximum likelihood estimates [21]. 

E. Performance Estimation 

The same data division scheme as used in [4] was used. 

Classifier training was achieved using data from 22 

recordings of the database (DS1 in [4]) and performance 

assessment was determined using the other 22 recordings 

(DS2 in [4]). Performance measures considered were the 

accuracy, sensitivity, positive predictivity and false positive 

ratio for VEB and SVEB beat classes. The 5-way beat-by-

beat performance is also presented. Definitions for these 

measures may be found in [4]. 

III. RESULTS AND DISCUSSION 

The SVEB and VEB classification performance figures 
are shown in Table II for the two classifier configurations 
considered in this study. The beat-by-beat performance for 
FS2 is shown in Table III. 

FS2 outperformed FS1 for both SVEB and VEB 
detection suggesting that P wave, QRS onset and offset and 
T wave offset information did not aid the beat classification 
problem. 

For FS2, the overall accuracy for SVEB detection was 
94.4% with a sensitivity of 73.5%, a positive predictivity of 
37.0% and a false positive ratio of 4.8%. Comparison with 
other published detectors reveals that the detector has similar 
SVEB performance (e.g. [4] Acc: 94.6%, Se: 75.9%, +P 
38.5%; [11] Se: 77%, +P: 39%; [15] Se: 60.8%, +P 52.3%).  

The overall accuracy for VEB detection was 97.8% with 
a sensitivity of 87.6%, a positive predictivity of 80.3% and a 
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Fig. 2: Two time-sampling methods for extracting ECG morphology features. (a) Segment Morphology: after determining the fudicial point (FP), the 

QRS onset and offset and T-wave offset points are found. Ten evenly spaced samples of the ECG between the QRS onset and offset and nine evenly 

spaced samples of the ECG between the QRS offset and T-wave offset are extracted. These features were used in FS1. (b) Fixed Interval Morphology: 

after determining the FP, nine samples of the ECG between FP-50ms and FP+100ms and nine samples between FP+150ms and FP+500ms are extracted. 

These features were used in FS2. 
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false positive ratio of 1.5%. Comparison with other 
published detectors shows the VEB performance is 
comparable to others (e.g. [4] Acc: 97.4%, Se: 77.7%, +P 
81.9%; [11] Se: 81%, +P 87%; [15] Se: 81.5%, +P 63.1%). 
Thus there is no performance loss when using a low cost 
computational algorithm. 

Benefits of the proposed algorithm are that its low 
computational cost may allow real-time implementation on a 
power limited devices such as Holter ECG recorders and 
therefore reduce the time period of arrhythmia detection 
without loss in detection accuracy. 

IV. CONCLUSION 

The objective of this study was to develop a 

supraventricular and ventricular ectopic heartbeat detection 

using a single lead ECG with low computational cost and 

suitable for real-time implementation. The study focused on 

two sets of time-domain features. The simplest system 

required QRS detection for each heartbeat followed by wave 

morphology sampling. The second system required P wave 

detection, QRS detection, QRS onset and offset detection 

and T wave offset detection. It also required wave 

morphology sampling. The first system outperformed the 

second system and was comparable to other published 

systems. These result shows that a supraventricular and 

ventricular ectopic heartbeat detection can be designed with 

low computational requirements. 
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TABLE II. A) SVEB AND VEB PERFORMANCE MEASURES FOR FEATURE 

SETS FS1 AND FS2. B) BEAT-BY-BEAT CLASSIFICATION TABLE FOR FS2. 

 

A)  

 SVEB  VEB 

 Acc(%) Se(%) +P(%) FPR(%)  Acc(%) Se(%) +P(%) FPR(%) 

FS1 93.6 61.2 31.2 5.2  95.4 72.4 62.3 3.0 

FS2 94.4 73.5 37.0 4.8  97.8 87.6 80.3 1.5 

B) 

 

 

Algorithm 

  n s v f q 

R
ef

er
en

ce
 N 40455 2089 298 1328 88 

S 82 1352 393 10 0 

V 49 209 2820 129 14 

F 228 4 11 72 73 

Q 4 0 1 0 2 
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