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Abstract—We propose a technique, called source-space-ICA
to provide spatiotemporal reconstruction of brain sources. First,
the weight-vector-normalized minimum variance beamformer is
applied to reconstruct the electrical activity of a 3D scanning
grid which covers the whole brain. Second, principal component
analysis is used to reduce the dimension of the reconstructed
signal matrix of the source-space, then independent component
analysis (ICA) is applied on the resulting matrix to identify
multiple signal sources in the source-space. Third, the demixing
weight vectors obtained by ICA for the identified independent
components are projected back into the SS to obtain tomographic
maps of the sources. Besides localization, the proposed
source-space-ICA approach reconstructs the time-course of each
source in a single time-series without requiring prior knowledge
of location, orientation, and number of sources for a given
segment of EEG/MEG. Simulated EEG was used to evaluate the
source-space-ICA. The results show that the source-space-ICA
approach is able to separate and localize multiple weak sources
and is robust to interference from other sources as it identifies
the sources based on their statistical independence.

I. INTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG) and
magnetoencephalography (MEG) are noninvasive

recordings of brain electromagnetic activities with millisecond
temporal resolution. The aim of source imaging in EEG
and MEG is to spatially localize the neuronal sources and
reconstruct their corresponding time-courses. Several methods
have been proposed for this, such as dipole fitting, minimum
norm spatial filters, minimum variance spatial filters, and
variants of these such as adaptive or non-adaptive versions.

Dipole fitting [1] is a popular technique which assumes
that a predefined number of dipoles have generated the given
EEG/MEG segment. The main limitation of this technique
is that the number of sources must be specified in advance.
In addition, dipole fitting finds a single point for each
brain source and is unable to produce a tomographic map.
Minimum-norm based spatial filters, such as the original
minimum-norm filter [2] and standardized low resolution
electromagnetic tomography (sLORETA) [3] produce a
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tomographic map for the whole brain for a given MEG/EEG
epoch and do not require prior knowledge of the number of
brain sources. Minimum-variance spatial filters, such as the
adaptive minimum variance (MV) [4–6] beamformer, scan
the whole brain voxel by voxel and estimate the power of
each voxel for a given epoch to produce a tomographic
map. Minimum-variance beamformers have been shown to
have a higher spatial resolution than minimum-norm based
filters and can reconstruct signal sources with a small
signal-to-noise-ratio (SNR) [7].

In the EEG/MEG literature, the source localization problem
is mostly focused on strong brain sources (SNR>1) while
localization of weak sources, such as a SNR=0.25, remains a
limitation for current source estimators. This is because source
estimators such as minimum-variance and minimum-norm
spatial filters calculate the power or magnitude (neural activity
index) for each brain voxel to produce a tomographic map of
the brain for a given EEG/MEG segment. As a result, only
sources with a higher magnitude than the background activity
will appear in the map as a source signal.

Independent component analysis (ICA) is a blind source
separation technique which aims to separate K mutually
statistically independent, zero mean, sources from M linearly
combined signal mixtures [8]. In EEG and MEG, ICA is
a popular technique for removal of artifacts. In the case of
source localization, ICA accompanied with dipole fitting [9]
has been applied to localize and reconstruct the time-course
of the sources. In this approach, after applying ICA on
EEG (sensor-space-ICA), the dipole fitting technique is used
to localize the identified sensor-space components in the
source-space. One limitation of sensor-space-ICA is that the
number of underlying brain sources, K, is much greater than
the number of the EEG sensors, M , and sensor-space-ICA
is only able to find as many components as the number
of the sensors. One way to obtain more components is to
apply multiple bandpass filters before ICA. We propose a
new technique, called source-space-ICA which applies ICA
directly in the source-space. The idea of source-space-ICA
is to apply spatial filtering to reconstruct the time-courses
of the source-space (brain volume) on a 3D scanning grid
and then apply ICA to spatiotemporally identify the sources.
In this way, the number of identified sources can be greater
than the number of sensors. Unlike most source estimators,
source-space-ICA relies not only on the magnitude of the
sources but also on their statistical independence via ICA. This
helps to identify multiple weak, as well as strong, sources. In
source-space-ICA, due to spatial filtering, each signal given to
ICA is much less mixed with other source signals compared
with signals in sensor-space.

We first describe the background equations and then
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describe the experiment to evaluate the performance of the
source-space-ICA for source localization of multiple brain
sources with different SNRs. Throughout this paper, plain
italics indicate scalars, lower-case boldface italics indicate
vectors, and upper-case boldface italics indicate matrices.

II. METHODS

The measured EEG and MEG signal B(t) =
[b(t1), b(t2), ..., b(tK)]T , for K time samples on M
electrodes, at time point t is

b(t) =

∫
L(r)q(r)s(t, r)d(r) + η(t), (1)

and L(r) = [lx(r), ly(r), lz(r)] is a M × 3 lead-field
matrix which shows the sensitivity of scalp sensors in three
orthogonal directions (x,y,z) to the source signal s(t, r) located
at r = [rx, ry, rz]

T (mm) with a moment of q(r) =
[qx(r), qy(r), qz(r)]T (A.m), and η(t) is the additive noise.

The reconstructed time-course, ŝ(t, r) =
[ŝx(t, r), ŝy(t, r), ŝz(t, r)]T , for a given location r to
the vector beamformer can be written as

ŝ(t, r) = W T (r)b(t), (2)

where W (r) = [wx(r),wy(r),wz(r)] is a M × 3 matrix of
the vector beamformer coefficients. To obtain a tomographic
map for all the brain locations (voxels) for a given EEG/MEG
segment, the power for each voxel is calculated as

pξ(r) = wT
ξ (r)Cwξ(r) = 〈ŝξ(t, r)2〉,

ξ ∈ x, y, z; r ∈ Ω,
(3)

where 〈...〉 is the ensemble average, and Ω is the different
location on the scanning grid which covers the whole brain
(source-space) C is the covariance matrix

C = 〈b(t)bT (t)〉. (4)

III. SPATIAL FILTER ALGORITHMS

Beamforming is a popular technique for localization and
signal reconstruction of the brain sources in EEG and MEG
and has been successfully applied [4–6] and the relative
performance of different beamformers have been evaluated
[10–12]. The vector weight normalized minimum variance
(WNMV) beamformer, also known as Borgiotti-Kaplan [5],
was used to reconstruct brain sources at each voxel.

A. WNMV beamformer
The WNMV beamformer was chosen for this study mainly

because it does not have a location bias while the well known
linearly constrained minimum variance (LCMV) beamformer
has been shown to have a location bias [10]. The weight matrix
of the vector WNMV beamformer is

WWNMV (r) =
C−1L(r)P−1(r)√
P−1(r)Q(r)P−1(r)

(5)

where P (r) and Q(r) are

P (r) = LT (r)C−1L(r) and

Q(r) = LT (r)C−2L(r).
(6)

B. source-space-ICA

The proposed source-space-ICA is based on application
of ICA as a blind source separation technique on the
reconstructed time-courses of all brain voxels via the vector
WNMV beamformer. Since the reconstructed time-course for
a given location is a mixture of source signals at that location
and background activity, i.e., ŝ(t, r) 6= s(t, r), ICA can be
applied to separate the statistically independent source signals.
The matrix of reconstructed time-courses Ŝ ∈ <(3N×K) for all
N brain points on the scanning grid and time samples K is

Ŝ =



ŝx(t1, r1) ŝx(t2, r1) · · · ŝx(tK , r1)
ŝy(t1, r1) ŝy(t2, r1) · · · ŝy(tK , r1)
ŝz(t1, r1) ŝz(t2, r1) · · · ŝz(tK , r1)
ŝx(t1, r2) ŝx(t2, r2) · · · ŝx(tK , r2)
ŝy(t1, r2) ŝy(t2, r2) · · · ŝy(tK , r2)
ŝz(t1, r2) ŝz(t2, r2) · · · ŝz(tK , r2)

...
...

. . .
...

ŝz(t1, rN) ŝz(t2, rN) · · · ŝz(tK , rN)


. (7)

The demixing equation by ICA is

HT Ŝ = S̄. (8)

where

H = [h1,h2, ...,h3N ], H ∈ <(3N×3N), (9)

is the demixing matrix and each column of this matrix
corresponds to the identified independent component in S̄,

hic =



hicx(r1)
hicy(r1)
hicz(r1)
hicx(r2)
hicy(r2)
hicz(r2)

...
hicz(rN)


, ic = 1, 2, ..., 3N, (10)

and each row of S̄ is an independent component,

S̄ =


s̄1(t1) s̄1(t2) · · · s̄1(tK)
s̄2(t1) s̄2(t2) · · · s̄2(tK)

...
...

. . .
...

s̄3N(t1) s̄3N(t2) · · · s̄3N(tK)

 =


s̄1(t)
s̄2(t)

...
s̄3N(t)

 .

(11)
The demixing weight vector hic has 3 coefficients for
each candidate location r, which shows the strength of
the corresponding independent component in 3 orthogonal
directions for that location. To obtain a single value for each
location, which provides a tomographic map for identified
components, the 3-orthogonal values are summed

ĥic =


hic(r1)
hic(r2)

...
hic(rN)

 , ic = 1, 2, ..., 3N, (12)
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Fig. 1. The direction of the x, y, and z axes in the coordinate system used
to describe the spatial location of the artificial dipole in the brain. Coordinate
[0, 0, 0] is at the anterior commissure and in line with the anterior/posterior
commissural line.

and

|hic(rn)| =
√
h2
icx(rn) + h2

icy(rn) + h2
icz(rn),

n = 1, 2, ..., N.
(13)

By projecting the weight vector ĥic to the 3D scanning grid, it
is possible to obtain the tomographic map of the corresponding
independent components, s̄ic.

As the number of reconstructed time-series is large (3N )
depending on how many voxels were defined to scan the brain
volume, it is desirable to apply principal component analysis
(PCA) as a dimension-reduction technique to reduce the Ŝ
dimension before applying ICA. In this way the computational
demand decreases considerably and, after running ICA, the
dimension of S̄ and H will be N ′ × T and 3N × N ′

respectively and N ′ is an arbitrary number such as 10, 50,
or 100 which refers to the first N ′ principal components Ŝ
with highest variances and should be defined for PCA.

IV. COMPUTER SIMULATIONS

To evaluate the performance of source-space-ICA, simulated
EEG data were synthesized by equation 1 which contained
three sources as shown in Fig. 2 and η(t) was real EEG. The
real EEG was obtained from a healthy subject. The 64-channel
10-20 system was used for the location of EEG electrodes
and the EEG was sampled at 250 Hz. MNI coordinates are
used to describe the locations in the brain. The boundary
element method (BEM) model of the head [13], obtained
from the average MNI-template brain and implemented via
the FieldTrip toolbox [14], was used to calculate the lead-field
matrix. The x, y, and z axes are shown in Fig. 1. The length
of the simulated EEG was 6 s. The EEGLAB toolbox [15]
was used for ICA and PCA algorithms. The PCA algorithm
reduced the dimension of the signal matrix Ŝ to the first 30
principal components.

The SNR of the three brain sources superimposed on the
real EEG was defined as the Frobenius norm of the source
signal matrix to that of the real EEG matrix. The location
of the three sources is shown in Fig. 2 and their normalized
time-courses in Fig. 3. A 3D grid, with approximately 1200
locations which covers the whole brain, was used for scanning
the brain with the beamformer.
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Fig. 2. The red dot shows the spatial location of the three sources on an MNI
head. The location of the three sources is: r1 =[12, -12, 6]T mm, r2 =[30,
46, 6]T mm, and r3 =[-44, -12, 28]T mm for s1, s2 and s3 respectively.
The orientations of these sources are: ‖q(r1)‖ =[0, 0, 1]T , ‖q(r2)‖ =[0.57,
0.57, 0.57]T , and ‖q(r3)‖ =[0, 1, 0]T .
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Fig. 3. The time-courses of three simulated sources s1, s2, and s3. s1 and
s3 are sinusoidal at 10 and 15 Hz and s2 is a damped 6 Hz sinusoid. The
SNR of the three sources are 0.40, 0.25, and 1.00 respectively.

V. RESULTS

Fig. 4 shows the time-courses of the first 9 (of 30)
brain source signals found by source-space-ICA. By visual
inspection, it is clear that components 1, 3, and 8 are the
three sources, s1, s2 and s3 respectively, superimposed on the
real EEG. By projecting their corresponding demixing weights
(equation 12) onto the scanning grid it is possible to localize
these sources in the head (Fig. 5). The cross-hairs in Fig. 5
show the locations of the artificial sources (as shown in Fig.
2). For each component map, the centre of the voxel with the
largest value was considered to be the location of the dipole
for that component. The localization errors for sources s1, s2,
and s3 were calculated to be 11.5 mm, 2.8 mm and 7.2 mm.
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Fig. 4. The reconstructed time-courses of brain sources by source-space-ICA
for a 6-s EEG segment. Components 1, 3, and 8 (s̄1, s̄3, and s̄8) represent
s1, s2, and s3 respectively.
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ŝ
1
(
t
)

Fig. 5. Spatial location of the s̄1, s̄3, and s̄8 sources shown in Fig. 4. The
cross-hairs show the actual location of the sources.

VI. DISCUSSION

We have introduced a novel source-space-ICA approach to
localization and time-course reconstruction of brain sources.
The source-space-ICA successfully identified weak and deep
sources, as well as a shallow source with a high SNR. The
source-space-ICA applies the weight normalized minimum
variance beamformer to reconstruct the brain oscillations for
every point in the head. The ICA then separates different
sources from each other, so that it is possible to identify weak
brain sources. Although the localization error was 11.5 mm for
s1, the accuracy of source localization by source-space-ICA
can be increased by band-pass filtering the source-space signal
matrix to pass only the desired frequencies, this eases the task
of ICA decomposing the signal mixtures. Another way is to
apply a scanning grid with smaller voxels (in this study the size

of each voxel was 12 mm3). However, increasing the number
of voxels will increase the computational effort.

The main difference between the source-space-ICA
approach and other popular source localization methods,
such as minimum variance beamformers and sLORETA, is
that source-space-ICA identifies the sources based on their
statistical independence, while other methods find the sources
by measuring the magnitude of the sources in different
brain locations. This means that only sources stronger than
the background signal can be identified. Although ICA was
applied for localization of brain sources in [9], their approach
utilizes dipole fitting for ICA components. A major limitation
of this is with respect to localization of cluster sources, as
it can only find a single point source for every identified
component. In addition, in this approach, ICA is applied
to scalp signal only, while in source-space-ICA the ICA is
applied to the estimated signals of all brain voxels.
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