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Abstract— Present study proposes a methodology for includ-
ing sets of informative priors, comprising several dynamics
present in the data, as prior information to solve the Elec-
troencephalogram (EEG) inverse problem into a Kalman filter
based solution. To this aim, spatial, temporal, and frequential
signatures of EEG recordings are used to infer multiple priors
for the EEG source reconstruction of neural activity, when
there are active sources generating complex dynamics at the
sensors. Attained results using physiological-based simulations
show that including more informative s-f-t priors along with a
temporal-based solution, the reconstruction of neural activity
can be improved achieving an average localization error of
4mm, compared to 47mm that can be achieved using the
baseline approach.

I. INTRODUCTION

Electroencephalogram (EEG) is a long-standing neu-

roimaging technique for the analysis of neural activity con-

sisting in measuring the electric potential on the surface of

the head with an array of sensors. The EEG is known for hav-

ing a higher temporal resolution compared to other methods

as the functional magnetic resonance imaging (fMRI), being

the former the neuroimaging approach most commonly used.

EEG neural source reconstruction methods estimate the ac-

tivity inside the brain that better fits the potentials measured

over the scalp (inverse problem solution). However, EEG-

based reconstruction methods device an ill-posed problem

due to the infinite number of possible source activity that

may generate the same potentials.

Usually, solution of the inverse problem using methods,

like Low resolution tomography (LORETA), is calculated

using only the measurement at one single time instant.

However, neural activity has strong spatial and temporal

dynamics inherent to its nature, so in solution of the inverse

problem it is necessary to consider the dynamic variability

of the neural activity, therefore, the accurate estimation

of neural activity is highly dependent on the inclusion of

such information in the inverse problem solution. In this

regard, the Kalman filter is a useful tool for including

such temporal information [1], [2]. Moreover, under this

framework, prior information has to be included to obtain

an optimal unique solution. Typically, the prior information

is included in the form of pre-fixed covariance matrices,
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e.g., an identity matrix, in the case of minimum norm es-

timates (MNE), or a matrix based on a discretized Laplacian

operator [1]. Nevertheless, these approaches do not include

adequate priors since such covariance matrices are not based

on the information available on data. Thus, several ways of

obtaining informative constraints have been proposed. For

example, the multiple sparse priors method, where multiple

covariance matrices are computed from potentially activated

areas of the brain [3]. Those covariance matrices are linearly

combined to obtain a final, potentially, more informative

prior. Another approach to obtain the prior covariance matrix

is to use a Linear Constrained Minimum Variance (LCMV)

spatial filter, termed beamformer, as discussed in [4]. Nev-

ertheless, the EEG data has a dynamic information inherent

in its nature that cannot be fully exploited if the raw data

is used to extract the covariance matrix. In this regard, t-

f representations can be considered as an alternative tech-

nique that allows to extract additional information about the

signal dynamics [5]. The precision of the neural activity

reconstruction can be improved by adequate decomposing

the recordings into well-defined s-f-t components, without

making very restrictive assumptions about the data, i.e.,

linearity or statistical independence of the sources [5], [6].

Aimed to obtain a set of multiple priors comprising the

underlying dynamic behaviors hidden in the raw EEG record-

ings, the present study proposes the usage of the enhanced

signal representation, introducing s-t-f decomposition of the

data. Afterwards, obtained spatial, temporal and frequential

signatures of data are mapped into the sources space, as

a result providing a set of priors directly related with the

different dynamics present in the data. Accomplished s-f-t

based priors are to be further included within the Kalman

filter solution framework.

II. BACKGROUND

A. Formulation of the EEG inverse problem

The magnitude of electromagnetic fields measured at

the scalp with EEG can be obtained from the quasi-static

approximation of Maxwell equations and Poisson equation.

This allows writing the following general linear model:

Y = LJ + ǫ, (1)

where Y ∈ R
Nc×Nt is the EEG dataset of Nc sensors and

Nt time samples, J ∈ RNd×Nt is the amplitude of Nd
current dipoles distributed through the cortical surface with

fixed orientation perpendicular to it. Both data and sources

are related by the gain matrix L ∈ RNc×Nd (also known

as the lead field matrix), and the obtained measurements
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are affected by zero mean Gaussian noise ǫ ∈ R
Nc×Nt

with covariance cov(ǫ) = τ2Qǫ ∈ RNc×Nc , τ ∈ R. The

selection of a distributed approach (Nd ≫ Nc) means that

the lead field matrix L is non-invertible, and that the source

estimation Ĵ can not be directly recovered.

Moreover, the problem can be rewritten in a state space

model representation, as follows [1] :

jk+1 = Gjk + ηk, (2a)

yk = Ljk + ǫk, (2b)

where ηk ∈ RNd×1 is the gaussian process noise with

covariance matrix cov(ηk) = α
2Q ∈ RNd×Nd , being α ∈ R,

and G ∈ RNd×Nd the state transition matrix. Finally, jk ∈
RNd×1 and yk ∈ RNc×1 are vectors containing the activity

of the dipoles and channels, respectively, at time instant k.
Under the state space framework, Kalman filter becomes

a suitable method to estimate the brain activity J [1].

However, matricesG,Q, andQǫ should be properly selected

in advance. In this work, computation of the matrix Q

is studied. In general, the dynamic structure of an EEG

signal is very complex and cannot be fully described by the

deterministic model G. Thus, according to the state space

model, a lot of information is contained in ηk, and so in Q.

However, Q typically does not contain relevant information

since normally it is computed without taking into account

the information available in Y , as discussed in [7].

B. Informative s-f-t priors

A suitable way to obtain an informative prior Q is by in-

troducing constraints derived from different s-f-t signatures.

This work proposes a multivariate decomposition applied

over a three-way time-varying EEG spectrum S(s; f, t) ∈
RNc×Nf×Nt , which shows the energy of the s channel at

frequency f and time instant t, being Nf the number of

frequency-bins, defined as:

S(s; f, t) = |υ(t, f) ∗ y(s, t)|2, (3)

where notation ∗ stands for convolution.

Thus, proposed approach tends to obtain the covariance

matrix as a weighted sum of Nk priors, each one related to

an specific behavior on the s-f-t domain, by using the well

known beamformer-based approach [4]:

dkii =
1

δi
(l̃⊤(·,i)(Λ

k)−1 l̃(·,i))
−1, ∀k = 1, . . . , Nk, (4)

where dkii stands for the ith diagonal element of the prior

matrix Dk ∈ RNd×Nd , δi = 1/(l̃
⊤

(·,i)l̃(·,i)) represents a

normalization term, and l̃(·,i) is the ith column of L̃, which

is the result of squaring each element of the matrix L,

representing a linear relation between the spatial signatures

of each s-f-t decomposition and the spectrum of current

sources generating scalp voltages, as recommended in [5]

for source spectral imaging approaches. Additionally, matrix

Λ
k ∈ RNc×Nc stands for the spatial-covariance matrix

(relating to the sensors) on the new space of representation.

Thus, to obtain the set of Nk multiple priors, the below

way of computing corresponding covariance matrices, is

proposed, based on Parallel Factor Analysis, termed Parafac,

whose basic structural model for unfolding the data matrix

S(s; f, t) is defined as [5], [8]:

ŝsft =

Nk∑

k=1

askbfkctk + ε; (5)

being Nk the number of decomposition factors and ε is the

reconstruction residual.

The challenge is to find the loading matrices A ∈
RNc×Nk , B ∈ RNf×Nk , and C ∈ RNt×Nk , whose cor-

responding row vectors ak = {ask}, bk = {bfk} and

ck = {ctk}, are related to the spatial, spectral, and temporal

signatures of each decomposition factor, respectively. The k-
th covariance matrix, Λk, stand for the similitude matrix of

each spatial signature ak of the decomposition, as follows:

Λ
k =

aka
⊤

k

||ak||2
, Λk ∈ R

Nc×Nc , (6)

Therefore, because the direct relation among spatial, fre-

quential and temporal factors, each covariance matrix con-

tributes with the information in a specific frequency band,

given by the spectral signature bk and with a particular

temporal behavior, represented by ck. So, after obtaining

the Nk spatial covariance matrices, the same number of

beamformers (s-f-t based priors) can be computed by Eq. (4)

and used to create the prior covariance matrix Q, as follows:

Q =

Nk∑

k=1

hkD
k, (7)

where hk is the k−th weighting hyperparameter. Since the

norm of each spatial signature ak is directly related to

the contribution of the k-th decomposition component, the

hyperparameter hk can be defined as hk = ||ak||.
Lastly, the covariance parameters α and τ are computed

using a likelihood maximization algorithm, more specifically,

the Akaike Information Criterion, as explained in [1].

III. EXPERIMENTAL SET-UP

A. Database Description

The most common approach to assess the inverse solution

performance is using simulated data, since the activity of

the underlying sources is known and the methods can be

objectively validated. Particularly, one active source ran-

domly located in the cortex, simulated by a realistic model

is considered, provided that all the parameters are tuned to

simulate normal activity [9]:

(8)

1

ς2
∂2ϕ (t)

∂t2
+
2

ς

∂ϕ (t)

∂t
= c1ϕ (t) + c2ϕ (t− t0)

+ n2ϕ (t)
2
+ n3ϕ (t)

3
+ ζ,

Moreover, to obtain a set of measurements Y , Eq. (1) is

solved using a lead field matrix calculated by the Boundary

Elements Method and discretized using 8194 vertices. The

source activity is measured by means of 34 sensors on the

scalp. In addition, to evaluate performance of the proposed
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method, the following two error measurements are carried

out, as suggested by [10]:

e1 =||r(max
∀i
{m̃i})− rsim||

2 (9a)

e2 =

Nd∑

i=1

m̃i||ri − rsim||
2 (9b)

where rsim are the true spatial coordinates of the active

dipole, ri are the coordinates of the ith dipole, m̃i is the

estimated energy of ith dipole, and r(max∀i{m̃i}) are the

coordinates of the dipole having the highest estimated energy.

The former measurement computes the raw localization

error, while the latter one adds a spatial dispersion penalty.

B. Preprocessing and s-f-t representation enhancement

For the sake of simplicity, the s-f-t analysis is performed

within a range from 1 to 50Hz, with a resolution of 50 bins.

Additionally, to perform the s-t-f represention, this work

considers the complex Morlet Wavelet, υ ∈ C, that has been

used for the analysis of multichannel EEG spectrum:

υ(t, f) = σ
−1/2
t π−1/4 exp(2πf0t) exp

(
−t2

2σ2t

)
, (10)

where f0 is the central frequency and σt is the bandwidth.

In computing the Parafac decomposition, the number of

factors (Nk) selection is based on the Concordia index

[8]. Besides, the factors are computed under non-negativity

constrains [5]. For instance, Figure 1 shows the spatial

(top), frequential (left-bottom) and temporal (right-bottom)

signatures of the Parafac decomposition. It can be clearly

seen that most quantity of information is located between 10
and 30Hz, as expected for normal neural activity.

C. Results

The scenario designed to assess performance of considered

approach, consists in computing 30 inversions for different

randomly selected source locations, generating activity with

the dynamical model described in Eq. (8). Furthermore,

results of proposed approach are compared against the

Kalman filter with process noise covariance matrix Q =
(∆⊺∆)−1, where ∆ is a Laplacian operator, as suggested

in [1]. Regarding to the state transition matrix used, in both

filters a random walk model is considered for the sake of

simplicity i.e., G = INd
. An example of obtained inversions

is shown in Figure 2. Bottom panel shows the simulated

activity (Figure 2(c)), while top-left (Figure 2(a)) and top-

right (Figure 2(b)) panels show reconstructed activity for

LORETA-based priors and s-f-t based priors, respectively.

It is worth noting that inclusion of more informative priors

allows achieving a more accurate reconstruction.

Moreover, the approach is evaluated under different values

of SNR= {10, 20, 30} dB. Figure 3 shows the results for

both error measures against the SNR level, as the mean

and standard deviation computed over 30 realizations of

the experiment. As expected, the lower the SNR value, the

higher the measured error, nevertheless, it can be seen an

improvement in the reconstruction, when s-f-t priors are used.

(a) Reconstruction using Kalman
with LORETA-based priors.

(b) Reconstruction using Kalman
with s-f-t based priors.

(c) Simulated activity.

Fig. 2. Simulated activity and its corresponding reconstruction using the
considered methods.

(a) Weighted distance.

(b) Euclidean distance.

Fig. 3. Error measurements under several Signal-to-Noise Ratio values.

IV. DISCUSSION

The main goal of present study is to develop a methodol-

ogy for EEG source reconstruction of neural activity, that

allows to include informative s-f-t priors into an inverse

problem solution based on a Kalman filter framework. Sev-

eral tests are carried out to assess the behavior of proposed

approach, which evidence the following aspects to consider:

Present study discusses the introduction of s-f-t infor-

mation in terms of the process noise covariance matrix to

improve the EEG source reconstruction. For this aim, Parafac
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Fig. 1. Factors obtained from the Parafac decomposition over the dataset corresponding to the case presented in Figure 2

multivariate decomposition is considered to extract the s-f-

t information from the EEG data, which has proved to be

appropriate for EEG representation.

Several studies have considered the Kalman filter frame-

work as a suitable tool for solving the EEG inverse problem,

due to its ability of including the different dynamics present

in the data as part of the solution. Nevertheless, as shown

in Figures 2 and 3, inclusion of informative s-f-t priors

improves the neural activity reconstruction, in comparison

with conventional approaches.

In average, achieved results show lower error in the

neural activity reconstruction when informative priors are

considered, for both error measurements. Nevertheless, the

lower the SNR value, the higher the error. This fact can be

explained due to the lack of a denoising stage. Moreover,

as the SNR value decreases, the solution obtained using the

proposed approach tends to converge to the same solution

obtained by Kalman filter using the LORETA-based prior.

In the proposed approach, there is a limitation that should

be pointed out: the proposed solution based on s-f-t priors

should not work properly when several foci of activity

with the same frequency are considered. This drawback is

conditioned by the fact that the time frequency representation

takes into account only the magnitude of the spectra of

the channels. Therefore, any information about the phase

between the active sources will be lost.

V. CONCLUSIONS

A new methodology to generate data-based priors is ex-

plored, which is based on the assumption that by including

s-f-t representation, the obtained priors may contain more

suitable information about the neural activity. Addition-

ally, the obtained priors are included into a Kalman filter

framework for solving the EEG inverse problem, which

allows to include explicitly different dynamics present on

the data into the solution. Obtained results show that the s-

f-t based estimated priors along with a dynamical solution,

are able to detect more accurately the source localization.

Additionally, discussed estimation approaches supply a better

interpretability about the obtained priors, according to the

dynamics present on the data.

As a future work, a model that encodes more complex

dynamics should be taken into account instead of using the

random walks approach. Also, a time-frequency representa-

tion that provides information about the phase of the signal

should be studied.
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