
An Adaptive Dialogue System

with Online Dialogue Policy Learning

Alexandros Papangelis1,2, Nikolaos Kouroupas3,
Vangelis Karkaletsis1, and Fillia Makedon2

1 National Centre for Scientific Research “Demokritos”,
Institute of Informatics and Telecommunications

2 University of Texas at Arlington
Department of Computer Science and Engineering
3 University of Piraeus, Department of Informatics

alexandros.papangelis@mavs.uta.edu, vangelis@iit.demokritos.gr,

makedon@uta.edu, nick kouroupas@hotmail.com

Abstract. In this work we present an architecture for Adaptive Di-
alogue Systems and a novel system that serves as a Museum Guide.
It employs several online Reinforcement Learning (RL) techniques to
achieve adaptation to the environment as well as to different users. Not
many systems have been proposed that apply online RL methods and
this is one of the first to fully describe an Adaptive Dialogue System
with online dialogue policy learning. We evaluate our system through
user simulations and compare the several implemented algorithms on a
simple scenario.

Keywords: Adaptive Dialogue Systems, Reinforcement Learning.

1 Introduction

Dialogue Systems (DS) are systems that are able to make human-like conversa-
tion with their users and are widely used, mainly as service providers (customer
support, flight or hotel booking and others). Such systems, however, are static
and inflexible to individual user needs or to changes in their environment, giv-
ing rise to a growing need for adaptation in DS. Adaptive Dialogue Systems
(ADS) are rapidly becoming smarter and more complex as novel or state of the
art Artificial Intelligence (AI) techniques are being applied. AI is a very impor-
tant part of ADS as it provides methods for learning optimal dialogue policies,
Natural Language Understanding (NLU), Natural Language Generation (NLG)
strategies and more. In this work we propose an ADS architecture and a system
that automatically learns optimal dialogue policies using online RL algorithms.

To the best of our knowledge there is a limited amount of works on di-
alogue policy learning and due to space constraints we will only mention a
few. Cuayáhuitl et al. [2] propose a travel planning DS, that uses hierarchi-
cal Reinforcement Learning (RL) to learn dialogue policies for complex actions.

I. Maglogiannis, V. Plagianakos, and I. Vlahavas (Eds.): SETN 2012, LNAI 7297, pp. 323–330, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

324 A. Papangelis et al.

Young et al. [14] propose an ADS that provides venue information to tourists in
a fictitious city that is able to handle uncertainty and misunderstandings. These
systems, however, learn dialogue policies in an offline fashion, meaning that when
they interact with real users they actually follow an optimal but static policy.
Pietquin et al. [7] propose a system that provides information about restaurants
and follow a particle filtering approach to dialogue policy learning. The authors
propose the Kalman Temporal Differences algorithm, that is able to learn poli-
cies online while also being sample-efficient compared to other methods. Gašić
et al. [3] propose a system that provides information about restaurants in Cam-
bridge and applies online RL using Gaussian Processes to learn dialogue policies.
These approaches, however, while having many advantages such as handling un-
certainty or error recovery, are expensive to run since in [7] many dialogues are
required to solve a small problem and in [3] the improvement was not statistically
significant over a handcrafted policy.

Our main contribution is that we propose an architecture for ADS that applies
several online RL algorithms for dialogue policy learning that are simple to
implement and of low cost to run. Such a system is able to learn policies from
simulated users for several user categories and these policies are then used as
initial policies when the system interacts with a real user. One can also provide
handcrafted policies when expert knowledge is available. The system is therefore
able to rapidly adapt to a new user since it exploits prior knowledge and continues
to learn throughout the interaction.

In the next section we will briefly present some necessary background knowl-
edge, in section 3 we will review the design of our system, in section 4 we will
present our evaluation and in section 5 we will discuss the results and conclude.

2 Background

In this section we will briefly provide some details on Markov Decision Processes
(MDP), which is the model used by RL, as well as details about RL itself to
better understand how it is applied to learn optimal dialogue policies in our
system.

A MDP is a tuple M = {S,A, P}, composed of a non empty set of states
S, a non empty set of actions A and a transition probability kernel P that, for
each triplet (s1, a, s2), models the probability of moving from state s1 to state
s2 when taking action a. When the system transits from a state to another
it receives an immediate feedback value r, called reward. We define a reward
function to be the expected value of that reward: R(s, a) = E[r(s, a)]. Here
r(s, a) represents the immediate reward the system received after taking action
a [11]. A policy π dictates the behaviour of a system and is defined as a mapping
from S × A to a distribution π(s, α) that models the probability according to
which the system will take action α when it is in state s. A sequence of states
and actions until a terminal state is reached defines an episode. For example,
a search robot modelled as an MDP may be in a state reflecting its location,
and the available actions may be the directions it can go. It will receive positive

An Adaptive Dialogue System with Online Dialogue Policy Learning 325

feedback for finding what it was looking for and negative analogous to the time
spent searching. A policy would describe a way of searching the space and RL
would try, through the robot’s interaction with the environment, to find an
optimal way of searching.

More formally, RL tries to find (or learn) an optimal policy π for a sys-
tem modelled as an MDP. To this aim a function V (s), called value func-
tion, must be defined that will provide an estimate of how good a policy is
V π(s) = E[

∑∞
t=0 γ

trt+1|s0 = s], s ∈ S, i.e. V π(s) yields the expected cumu-
lative discounted rewards when the system begins from state s and follows
policy π. The discounting factor γ ∈ [0, 1] captures the significance of future
rewards. The return of a policy π is defined as: Jπ =

∑∞
t=0 γ

trt(st, π(st)),
where π(st) = argmaxα{π(st, α)}. For an optimal policy π� we have that
Jπ�

(s) = V π�

(s), ∀s ∈ S. The action-value function is defined as Qπ(s, α) =
E[
∑∞

t=0 γ
trt+1|s0 = s, a0 = α], where s ∈ S, α ∈ A. Function Qπ(s, a) provides

the expected cumulative discounted rewards when the system begins from state
s and takes action α, following policy π. [11]

RL algorithms can be categorised into model-free and model-based algorithms.
The first, as the name implies, do not use any model of the environment to aid
the learning process, while the latter use interactions with the environment as
well as interactions with a model that simulates the world to speed up learning.
To implement model-based algorithms we used the Dyna [10] architecture.

3 System Overview

Our system is designed to act as a museum guide and provide descriptions of
exhibits in a virtual museum. It is based on the INDIGO [5] system and was
implemented using the Olympus [1] platform, which is a platform for developing
dialogue systems for research purposes. INDIGO is an affective museum guide
dialogue system, able to adapt to different user personalities and user expertise
levels. It can assess the user’s mood and emotional state and adapt its output
accordingly. For dialogue management we used Olympus’ RavenClaw Dialogue
Manager (DM) and extended it with online RL modules.

Figure 1 depicts the architecture of the proposed Museum Guide dialogue
system, where s, a, r are the current state, previous action and reward received
respectively and s′, a′ are the new state and new action. ũu and ũs are the noisy
user and system utterances while uu and us are the interpreted user utterance
and actual system utterance respectively. The system uses Olympus’ NLU and
NLG components and also has a learning component, where all learning algo-
rithms are implemented. The DM receives uu which contains the reward of the
last action r. It then sends s, a and r to the learning component and receives
back the new system state s′ and the new action a′ it should take. It then takes
action a′ and sends a description of the system’s utterance us to the NLG com-
ponent. Last, it has an ontology that is based on INDIGO’s ontology, which
describes museum artefacts, time periods, persons and more and contains in-
formation about many exhibits. Museum Guide currently supports one type of

326 A. Papangelis et al.

query and that is requesting for a description of an exhibit. Search in the ontol-
ogy is performed by providing values for the exhibit’s type, construction time,
or time period if it is a person and its physical location.

Fig. 1. Architecture of the proposed Museum Guide System

To achieve adaptation in ADS researchers should carefully select methods that
are able to tackle the many challenges of this field. RL can successfully handle
many of those, such as error recovery and robustness to environmental changes.
More specifically, RL can be applied in Dialogue Management (DM) in order to
find an optimal dialogue policy that will yield the best action the system should
take, depending on the state it is in. Using online RL techniques, the system is
able to learn continuously and adapt to changes or different users.

We have implemented a variety of online RL algorithms covering a broad range
of the available methods. Our system therefore is able to continue learning as it
interacts with real users as well as switch learning methods at will, depending
on the problem at hand. Each algorithm’s output is in a standardized form
and so policies are interchangeable, meaning we can learn a policy using one
algorithm and apply it using another. This gives the designer the option of
providing a handcrafted policy (modeling prior knowledge) to the system and
the system will then optimize that policy according to its current needs. One
can also have several user categories and provide handcrafted policies or policies
learned through simulations, for each category. The system will be able to use
them as initial policies when interacting with appropriate users and refine them
to adapt to the specific users’ needs. We will now briefly describe the algorithms
implemented in our system.

SARSA(λ) (S(λ)) is a very popular RL algorithm, often used in ADS.
It applies temporal difference methods for learning and produces an estimate
of Qπ(s, a), represented as a matrix [10]. λ is a parameter thar controls how
much effect will past experience have in future updates. SARSA(λ) is a model-
free algorithm, but we also have a model-based version implemented, called
DynaSARSA(λ) (DS(λ)).

Q-Learning (Q) was proposed by Watkins [12] and it also learns an estimate
of Qπ(s, a). The major differences with SARSA(λ) are that it calculates the
difference between Qπ(s′, a∗) and Qπ(s, a), where s′ is the new state and a∗ is

An Adaptive Dialogue System with Online Dialogue Policy Learning 327

the greedily optimal action, that it only updates a single entry of the matrix
representing Qπ(s, a) at each iteration and does not use eligibility traces, which
is a matrix that keeps track of states visited and actions taken. We also have a
Dyna version implemented for this algorithm (DQ).

Q(λ) is similar to Q-Learning in the sense that it uses the temporal difference
between Qπ(s′, a∗) and Qπ(s, a) and similar to SARSA(λ) in the sense that it
updates the whole Qπ(s, a) matrix at each iteration and uses eligibility traces
[12,6]. There is a Dyna version for Q(λ) as well (DQ(λ)).

Actor Critic QV (AC) is an algorithm that uses an actor to follow the policy
that is being learned and a critic to evaluate it. This algorithm uses the temporal
difference between Qπ(s, a) and V π(s) to compute updates for the actor and the
critic [13]. We have also implemented a model-based version for this algorithm
(DAC).

Our system can operate in two modes. Either in simulation mode, where the
learning algorithms are trained using simulated users, or in real user mode where
the system interacts with real users while continuing to learn at a lower pace. A
policy learnt using either mode can be saved and loaded for later use again in
either mode. During training the system interacts with a real or simulated user
and receives a reward after each action (i.e. system utterance). Through this
process the system learns which actions bring higher rewards and in what order
they should be taken. At the initial stages of training, RL algorithms explore
the state-action space and, therefore, make many mistakes. Below we can see
example dialogues before training, where actions are taken in a near random
way and after training with SARSA(λ):

Dialogue 1: Untrained System
S: Welcome to Museum Guide!
S: What is the location you are looking for?
U: In Athens
S: What is it you’d like to learn about?
U: An altar
S: What is the time period you are looking
for?
U: Around 100bc
S: What is the time period you are looking
for?
U: Around 100bc
S: What is the location you are looking for?
U: In Athens
S: What is the time period you are looking
for?
U: Around 100bc
S: What is the location you are looking for?
U: In Athens
S: Welcome to Museum Guide!... (omitted)
S: [ITEM DESCRIPTION]
S: You can say, start a new query, or good-
bye.
U: bye!
S: Thank you for using Museum Guide,
goodbye!

Dialogue 2: Trained System
S: Welcome to Museum Guide!
S: What is it you’d like to learn about?
U: An altar
S: What is the time period you are looking
for?
U: Around 100bc
S: What is the location you are looking for?
U: In Athens
S: [ITEM DESCRIPTION]
S: You can say, start a new query, or good-
bye.
U: bye!
S: Thank you for using Museum Guide,
goodbye!

328 A. Papangelis et al.

4 Evaluation

Evaluation of ADS or DS in general is still an open question. Many approaches
and methods have been proposed as listed in detail in [8]. When researchers use
RL methods the most common approach is to use the reward function R(s, a) as
a metric of performance, since it is explicitly defined to minimize or maximize
standard metrics such as dialogue length or goal achievement. In our experiments
we evaluated each algorithm’s speed of convergence, using the reward function
R(d, a) as defined later in equation (1). In the rest of this section we will formally
model the dialogue problem, describe our experimental setup and present the
results of our evaluation, where we focused on the comparison of the different
techniques. For simplicity, we opted for a noise free scenario.

The dialogue problem can be formulated as a slot filling problem. In such a
setting, for example, we have a system that needs to retrieve an exhibit from a
database and present it to the user. The user probably has in mind something
like: “I want to learn about an altar, dating from 500 BC and located near
Athens.” The information that the system needs (which is item attribute values
in its database) are in italics, and are called slots. The system must then ask
a series of questions in order to retrieve the required information i.e. fill those
slots. For different queries the system will require different slots to be filled.

More formally, we can define the problem as: Z =< z0, ..., zN >∈ M,M =
M0×M1× ...×MN ,Mi = {1, ..., |Mi|}, where Z are the N slots the user needs to
fill and each slot zi belongs in the set Mi. We can also define the dialogue state
as a vector d ∈ M , where the dimensions correspond to slots and their values
correspond to the slot values. We also define system actions A ∈ {1, ..., |Z|} to
be requests for slots and specifically ai will request slot zi. It is possible to define
a set of available actions ãi ⊂ A at each dialogue state di but we let ãi = A
for simplicity. The user goals are represented by a query vector q ⊂ Z, that
represents the slots needed to be filled in order for the system to accurately
provide an answer. Please note that we set action aN to mean Give Answer. The
reward function in our system is defined as:

R(d, a) =

⎧
⎪⎨

⎪⎩

−1, if a �= aN

−100, if a = aN , ∃qi|qi = ∅
0, if a = aN ,¬∃qi|qi = ∅

(1)

Thus, the optimal reward for each problem is: −|q| since |q| < |Z|. Note that
this reward function penalises long dialogues and inaccurate responses (i.e. at-
tempts to answer without enough information). It is straightforward to extend
this model to account for uncertainty but we will not discuss this in this work.

In our evaluation our problem had 3 slots, Type, TimePeriod and Location,
and typically 6 actions,Welcome, AskType, AskTimePeriod, AskLocation, Greet-
Goodbye and GiveAnswer, out of which we hardcoded the first action to always
be Welcome and the last to be GreetGoodbye. The system then needed to learn
how to retrieve the three slots in the most efficient way. We evaluated the system
using a simple noise-free user simulator that always responds correctly to any

An Adaptive Dialogue System with Online Dialogue Policy Learning 329

system request. An episode in this problem is over when the system presents the
results to the user (which may or may not be the right thing to do). For each
algorithm we counted the number of episodes it took to learn the optimal policy
and averaged it over 25 runs. Note here that convergence speed is correlated with
the average total reward, since the sooner the algorithm converges the higher
the reward (it will be performing optimally from the point of convergence and
after). The results are shown in Table 1, below.

Table 1. Average
learning speed

Alg. Conv. Ep.

S(λ) 8.52
Q 13.8

Q(λ) 12.24
AC 11.6

DS(λ) 31.32
DQ 12.16

DQ(λ) 26.6
DAC 29.04

Table 2. Statistical significance, where � denotes p < 0.0001

Alg. S(λ) Q Q(λ) AC DS DQ DQ(λ) DAC

S(λ) 1
Q � 1

Q(λ) � 0.0486 1
AC 0.0028 0.0352 0.4961 1

DS(λ) � � � � 1
DQ 0.0032 0.1804 0.9443 0.6724 � 1

DQ(λ) � � � � 0.1950 � 1
DAC � � � � 0.6120 � 0.5355 1

As we can see in Table 1, SARSA(λ) outperforms all algorithms while enjoying
statistically significant differences, as shown in Table 2, and DynaQ Learning
outperforms the rest model based algorithms. SARSA(λ)’s performance can be
in part explained by the eligibility traces that allow past experience to aid the
learning process. Model based algorithms evidently do not perform that well,
with the statistically insignificant differences (with p > 0.05) explained by the
fact that these algorithms (including AC) are highly unstable and therefore
have very high variance in terms of number of episodes required to converge. We
implemented all algorithms in our system to allow the designer freedom of choice
(each algorithm is representative of an RL class of methods) and flexibility in
unforeseen issues.

5 Concluding Remarks and Future Work

As we can see from Dialogue 1 and 2, there is a clear improvement on the
system’s behaviour during learning and the optimal dialogue policy resembles
one that a human designer would use. While this is a very simple scenario, one
can imagine that in a system with many more slots and admissible queries,
handcrafted policies are very hard or even impossible to create and inflexible
when coming to adapting to users’ needs and to abrupt changes in their goals.
Online RL can deal with such problems and scale to real world applications thus
alleviating the need of huge and complicated handcrafted policies. As mentioned
before, our system provides the option of importing a handcrafted policy, that
represents prior knowledge that the system may refine to its current needs.

330 A. Papangelis et al.

In the future we plan to implement state of the art online RL algorithms,
such as Natural Actor Belief Critic [4]. We also plan to apply hierarchical RL
to achieve a more natural representation of the system’s available actions and
the users’ goals and also apply techniques such as Complex Action Learning.
To this aim we will need to formulate the slot filling problem as a Semi Markov
Decision Process (SMDP). SMDPs allow for temporal abstraction in the model,
meaning an action can take an arbitrary amount of time to complete and so we
can model complex actions. Last we plan to test the Museum Guide system with
real users to gain valuable feedback and intuition.

References

1. Bohus, D., Rudnicky, A.I.: The RavenClaw dialog management framework: Archi-
tecture and systems. Computer Speech & Language 23(3), 332–361 (2009)

2. Cuayáhuitl, H., Renals, S., Lemon, O., Shimodaira, H.: Evaluation of a hierarchical
reinforcement learning spoken dialogue system. Comput. Speech Lang. 24, 395–429
(2010)

3. Gašić, M., Jurč́ıček, F., Thomson, B., Yu, K., Young, S.: On-line policy optimi-
sation of spoken dialogue systems via live interaction with human subjects. In:
Automatic Speech Recognition and Understanding, Hawaii (2011)

4. Jurč́ıček, F., Thomson, B., Keizer, S., Mairesse, F., Gašić, M., Yu, K., Young,
S.: Natural Belief-Critic: A Reinforcement Algorithm for Parameter Estimation in
Statistical Spoken Dialogue Systems. International Speech Communication Asso-
ciation 7, 1–26 (2010)

5. Konstantopoulos, S.: An Embodied Dialogue System with Personality and Emo-
tions. In: Proceedings of the 2010 Workshop on Companionable Dialogue Systems,
ACL 2010, pp. 31–36 (2010)

6. Peng, J., Williams, R.: Incremental multi-step Q-Learning. Machine Learning, 283–
290 (1996)

7. Pietquin, O., Geist, M., Chandramohan, S., Frezza-Buet, H.: Sample-Effcient Batch
Reinforcement Learning for Dialogue Management Optimization. ACM Transac-
tions on Speech and Language Processing 7(3), No. 7 (2011)

8. Pietquin, O., Hastie, H.: A survey on metrics for the evaluation of user simulations.
The Knowledge Engineering Review (2011) (to appear)

9. Rieser, V., Lemon, O.: Natural Language Generation as Planning Under Uncer-
tainty for Spoken Dialogue Systems. In: EACL 2009, pp. 683–691 (2009)

10. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT
Press, Cambridge (1998)

11. Szepesvári, C.: Algorithms for Reinforcement Learning. Synthesis Lectures on Ar-
tificial Intelligence and Machine Learning, vol. 4(1), pp. 1–103. Morgan & Claypool
Publishers (2010)

12. Watkins, C.J.C.H.: Learning from delayed rewards, PhD Thesis, University of Cam-
bridge, England (1989)

13. Wiering, M.A., Van Hasselt, H.: The QV family compared to other reinforcement
learning algorithms. In: IEEE Symposium on Adaptive Dynamic Programming and
Reinforcement Learning, pp. 101–108 (2009)

14. Young, S., Gašić, M., Keizer, S., Mairesse, F., Schatzmann, J., Thomson, B., Yu,
K.: The Hidden Information State model: A practical framework for POMDP-based
spoken dialogue management. Computer Speech & Language 24(2), 150–174 (2010)

	An Adaptive Dialogue Systemwith Online Dialogue Policy Learning
	Introduction
	Background
	System Overview
	Evaluation
	Concluding Remarks and Future Work
	References

