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Abstract. Moving towards the realization of genomic data in clinical practice, 
and following an individualized healthcare approach, the function and regula-
tion of genes has to be deciphered and manifested. Two of the most significant 
forms of molecular data come form microarray gene expression sources, and 
gene interactions sources – as encoded in Gene Regulatory Networks (GRNs). 
The usual computational task is the gene selection procedure with the GRNs to 
be mainly utilized for annotation and enrichment purposes. In this study we 
present a novel perception of these resources. Initially we locate all functional 
path-modules encoded in GRNs and we try to assess which of them are  
compatible and match the gene-expression profiles of samples that belong to 
different phenotypes. The differential power of the selected path-modules is 
computed and their biological relevance is assessed. The whole approach was  
applied on a set of microarray studies with the target of revealing putative regu-
latory mechanisms that govern and putatively guide the treatment responses of 
BRCA patients. The results were quite satisfactory according to their biological 
and clinical relevance. 

1 Introduction 

Advances in highthroughput technologies (e.g., microarrays, SNP mapping and  
copy-number variations etc.) have put the foundation stones for the vision of 
contemporary personalized medicine. On the other hand, systems biology follows a 
‘holistic’ approach in order to explore and study the behavior of biological components, 
trying to uncover and model cell interaction events and, in a way, reproduce the function 
of organisms. In such a context, we need computational methods that not only combine 
information and data from dispersed and heterogeneous data sources but also distil  
the knowledge and provide a systematic, genome-scale view of biology [1]. The  
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advantage of this approach is that it can identify emergent properties of the underlying  
molecular system as a ‘whole’ – an endeavor of limited success if targeted genes, 
reactions or even molecular pathways are studied in isolation. Genes and proteins do 
not function independently, but participate in complex, interconnected pathways and 
gene regulatory networks (GRN) that govern the function of cells, tissues, organs and 
organisms seen as functional biological systems and not just as a ‘bag of molecules’ 
[2]. At the same time, most of the known and established GNRs are based on 
laborious wet-lab experiments that make their generation and validation a rather 
difficult as well as time- and cost-consuming task. A major challenge is to accelerate 
our understanding of the molecular mechanisms of these variations and to produce 
targeted individualized therapies. Faced with such a challenge we devised and present 
an integrated methodology that ‘amalgamates’ knowledge and data from both GRNs 
and MA gene-expression sources. A preliminary realization of the methodology is 
implemented in a system called MinePath. MinePath aims to uncover potential gene-
regulatory ‘fingerprints’ and mechanisms that underlie and govern the molecular 
profiles of diseases. 

2 Microarrays and GRNs: Techniques and Limitations  

MA experiments involve more variables (genes) than samples (patients). This fact, 
leads to results with poor biological significance. To remedy this there is an open 
debate whether we should concentrate on gathering more data or on building new 
algorithms. Simon et al., [3], published a very strict criticism on the common pitfalls 
of microarray data mining, while in [4] the authors comment about the bias in the 
gene selection procedure.  

In the light of the these observations, and in order to overcome the posted limitations 
we have to view MA based gene-expression profiles just as an instance of biological 
information, strongly connected - rather than isolated, from other sources of related 
biological knowledge, e.g., GRNs. GRNs are network structures that depict the interac-
tion of DNA segments during the transcription of the genes into mRNA. From a com-
putational point of view, GRNs can be conceived as analogue biochemical computers 
that regulate the level of expression of target genes [5]. The network by itself acts as a 
mechanism that determines cellular behavior where the nodes are genes and edges are 
functions that represent the molecular reactions between the nodes. These functions 
can be perceived as Boolean functions, where nodes have only two possible states 
(“on” and “off”), and the whole network represented as a simple directed graph [6]. It 
is indicative that most of the relations in known and established GRNs have been de-
rived from laborious and extensive laboratory experiments and careful study of the 
existing biochemical literature. Thus GRNs are far from complete.  

A number of different methodologies have been proposed to help overcome this, 
and help to identify useful biological knowledge from GRNs with very few of them to 
be considered superior to the others - mainly because of the intrinsically noisy proper-
ty of the data, ‘the curse of dimensionality’, and the unknown ‘true’ underlying  
networks. In this paper we present a novel methodology that couples microarray  
gene-expression profiles wit GRNs. The methodology aims towards the identification 
of differentially expressed functional GRN path-modules.  
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3 MinePath: Revealing Phenotype-Specific Regulation  

Online public repositories contain a variety of information that includes not only the 
GRNs per se but links and rich annotations for the respective nodes (genes) and edges 
(reactions). In the current study we utilize the KEGG pathways repository1. KEGG 
provides a format representation standardized by its own markup description language 
(KGML2). A preliminary implementation of our methodology is implemented in a 
system called MinePath, and it unfolds into four phases. (i) Pathway decomposition. 
MinePath relies on a novel approach for GRN processing that takes into account all 
possible functional interactions of the network, i.e., the network’s functional sub-
paths. Different GRNs are downloaded from the KEGG repository. With an XML 
parser (operated on KEGG’s KGML representation scheme of GRNs) the network is 
decomposed into its all-possible sub-paths (see Figure 1.a for an exemplification). 
After parsing a set of (targeted) GRNs, the decomposed sub-paths are stored in a 
database that acts as a repository for future reference. As the database repository 
could contain sub-paths from a variety of different GRNs we may combine different 
molecular pathways and networks – a major need for molecular biology and a big 
challenge for systems biology and contemporary bioinformatics research. 

 

Fig. 1. (a) GRN decomposition: the artificial GRN (left) is decomposed into its all-possible 
sub-paths (10; right). (b) Functional path-modules: a reaction is considered as ‘active’ only-
and-only-if its starting gene is active (e.g., ‘ON’ → ‘ON’ or, ‘ON’ ⎯| ‘OFF’ for active activa-
tion/expression or, inhibition reactions, respectively; otherwise is considered as inactive, ‘OFF’ 
→ ? or, ‘OFF’ ⎯| ?, with the state of the regulated gene on the right of the reaction being unde-
termined). 

(ii) Inference of functional path-modules. Each GRN sub-path is interpreted accord-
ing to Kauffman’s principles and semantics [6]:  the network is a directed graph 
with genes (inputs and outputs) being the graph nodes and the edges between them 
representing the causal links between them, i.e., the regulatory reactions;  each 
node can be in one of the two states, ‘ON’, the gene is expressed or up-regulated (i.e., 
the respective substance being present) or, ‘OFF’, the gene is not-expressed or  
 

                                                           
1  KEGG: Kyoto Encyclopedia of Genes and Genomes; http://www.genome.jp/kegg/ 
2  KGML (KEGG Markup Language); http://www.genome.jp/kegg/xml/ 
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down-regulated; and  time is viewed as proceeding in discrete steps - at each step 
the new state of a node is a Boolean function of the prior states of the nodes with 
arrows pointing towards it. In order to cope with and reveal functional regulatory 
mechanisms we impose over the formed sub-paths the following requirement: for a 
sub-path to be considered as functional it should be ‘active’ during the GRN regula-
tion process - in other words we assume that all genes in a sub-path are functional. 
For example consider the reaction A → B (see Figure 1.b), if A is ‘ON’ then the acti-
vation/expression (‘→’) regulatory reaction is active, resulting into the activa-
tion/expression of gene B (‘ON’) – the same holds for an inhibition (⎯|) reaction. In 
the case that gene A is ‘OFF’ then the reaction is considered as inactive with the state 
of the regulated gene B to remain undetermined (‘?’). Under this assumption, a path-
module is just a sub-path (atomic or more complex) for which all its reactions are 
considered as active. So, the state of all genes engaged in a path-module that forms an 
ordered regulation pattern, e.g., the pattern of the complex regulatory mechanism A 
→ D ⎯| C is <‘ON’, ‘ON’, ‘OFF’>. 

(iii) Matching gene-expression profiles and path-modules. The next step is to lo-
cate microarray experiments and respective gene-expression data for which we expect 
(suspect) the targeted GRNs play an important role - for example, the cell-cycle and 
apoptosis GRNs play an important role in tumorgenesis and cancer progression. The 
samples of a binary transformed (discretized) gene-expression matrix are matched 
against functional path-modules of target GRNs. (retrieved form the described reposi-
tory). We follow an information-theoretic gene-expression discretization process (de-
tailed in [7]). 
 

 

Fig. 2. Matching gene-expression sample profiles with GRN functional path-modules: a logic-
gates approach 

As an example, assume the gene-expression binary profiles of six artificial samples 
for genes A, B, D and C - with ‘1’ to denote ‘ON’ and ‘0’ to denote ‘OFF’ - three of 
them are assigned to phenotype-1 (S1, S2, and S3) and the other three to phenotype-2 
(S4, S5, and S6) – refer to Figure 2. Furthermore, assume the artificial GRN shown in 
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the lower left part of Figure 2, and its sub-path A → B → D ⎯| C (in bold). We fol-
low a logic-gates process that aims to match the path-module instance of the sub-path 
with the respective samples’ binary instances. The process results into the formation 
of an ordered pattern that indicate the samples for which the target sub-path is consis-
tent with (‘1’s) or not (‘0’s), i.e., the respective path-module A=’ON’ → B=’ON’ → 
D=’ON’ ⎯| C=’OFF’ is active. 

(iv) The differential-power of path-modules. Note that for the finally inferred pat-
tern of Figure 2, <1,0,1,0,0,0>, value ‘1’ occurs in positions one and three which 
means that the examined path-module is active for samples one and three; in all other 
samples it is inactive (‘0’). As samples one and three belong to phenotype-1, the tar-
get path-module matches 2 out of 3 phenotype-1 samples, and zero phenotype-2 sam-
ples. In general, assume that there are S1 and S2 samples that belong to phenotype-1 
and phenotyp2, respectively, and that path-module Pi matches Si;1 and Si;2 samples 
form phenotype-1 and phenotype-2, respectively. Formula 1, computes the differen-
tial power of a path-module with respect to the two phenotypic classes; 

Si;1

S1

−
Si;2

S2

                                               (1) 

The formula posses a polarity characteristic according the class phenotype: positive 
for class S1 and negative for class S2; e.g., for the above example, the differential 
power of path-module A=’ON’ → B=’ON’ → D=’ON’ ⎯| C=’OFF’ is (2/3) – 0 = 
0.67, and as it positive it is interpreted and considered as a regulation mechanism that 
governs phenotype-1. 

4 The Regulation of Breast Cancer Treatment Response 

Most of breast cancer (BRCA) cases are estrogen responsive, a series of growth-
promoting pathways are activated, for example, the estrogen receptor (ER) related 
ErbB signaling GRN. In an effort to reveal the underlying regulatory mechanisms that 
govern BRCA patients’ treatment responses we applied the presented MinePath 
methodology on a set of four independent gene-expression studies targeting the ER 
phenotypic status of the respective patients, i.e., ER+ (ER positive) vs. ER- (ER 
negative). The details of the gene-expression data from the four studies are: GSE2034 
(the GEO-Gene Expression Omnibus3 study code), 286 patients [8]; GSE2990, 183 
patients [9]; GSE3494, 247 patients [10]; and GSE7390, 198 patients [11]. We 
targeted 14 pathways, all of which are engaged within the ‘Pathways in Cancer’ 
integrated pathway (KEGG code: hsa05200), e.g., ErbB (hsa04012), MAPK 
(hsa04010), mTOR (hsa04150) etc. After applying the aforementioned matching 
process we selected the 100 path-modules with the highest differential power – 50 for 
ER+ and 50 for the ER- phenotypes, respectively. Inspecting the results we observed 
that the pathway that engage a significantly larger, with respect to all other targeted 
pathways, number of the selected sub-paths is the ErbB signaling pathway. Figure 3 
shows the ErbB signaling pathway as colored with the help of the KEGG 
Mapper/Search&Color4 tool (symbols and coloring scheme are shown at the bottom 
                                                           
3  http://www.ncbi.nlm.nih.gov/geo/ 
4  http://www.genome.jp/kegg/mapper.html 



244 L. Koumakis et al. 

of the figure). Note the two different functional path cascades for the ER+ (black 
arrows) and ER- (grey arrows) phenotypes, respectively. Both have extra-cellular 
origins:  

 The ER- path originates from TGFα (transforming growth factor, alpha), AR 
(amphiregulin), BTC (betacellulin), and EPR (epiregulin) epidermal growth 
factors that activate both ErbB-1 and ErbB-2 EGF-receptors; then, the two 
receptors initiate the path GRB2 → GAB1 → PI3K → PKB/Akt that guides to 
the activation of mTOR that activates p70S6K which signals “protein synthesis”, 
and inhibits BAD which signals “cell survival”; 

 The ER+ path originates from the extra-cellular NRG1, NRG2 (neuregulin1,2) 
growth factors that activate ErbB-3 and ErbB-4 viral oncogenes followed by the  
PI3K → PKB/Akt activation reaction which is also part of the ER- path. But 
now, PKB/Akt acts just as an inhibitor of GSK-3 and blocking of “Metabolism”. 
Moreover, PKB/Akt activates mTOR, which now acts as an inhibitor of EIF-4EBP 
with the result of blocking “protein synthesis”. According to the recent biomedical 
literature the aforementioned results are quite relevant to the estrogen-receptor 
status - we focused our exploration on the mechanisms underlying the resistance 
to pure estrogen antagonists (e.g., fulvestrant5). 

 

 

Fig. 3. Regulation of ER+ and ER- phenotypes in the ErbB signaling GRN 

                                                           
5 Fulvestrant (Faslodex, AstraZeneca) is a drug treatment of hormone receptor-positive metas-

tatic BRCA in postmenopausal women with disease progression following anti-estrogen  
therapy. 
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Recent studies show the significant role of both ErbB3 and ErbB4 as alternative 
targets for the treatment of BRCA patients; as Sutherland notes in [12]: “… recent 
studies now implicates the other two ErbB family members, ErbB-3 and -4. Exposure 
of ER+ breast cancer cells to the pure antiestrogen, fulvestrant, increased levels of 
ErbB-3 or ErbB-4 and sensitivity to the growth-stimulatory effects of heregulin β1, a 
potent ligand for these receptors. Thus, the initial growth inhibitory effects of 
fulvestrant appear compromised by cellular plasticity that allows rapid compensatory 
growth stimulation via ErbB-3/4 …”; In addition, Hutcheson et al., [13], investigated 
whether induction of ErbB3 and/or ErbB4 may provide an alternative resistance 
mechanism to antihormonal action - their conclusion is that fulvestrant treatment is 
sensitive to the actions of the ErbB3/4 ligand HRGb1 (NRG1) with enhanced 
ErbB3/4-driven signaling activity, and significant increases in cell proliferation; the 
same results are also reported in other relevant studies related to the treatment of 
BRCA patients [14, 15]. 

5 Conclusions 

We have presented an integrated methodology for the coupling of both GRNs and 
MA gene expression profiles. In the heart of the methodology are the decomposition 
of GRNs into functional sub-paths, and the matching of these sub-paths with samples’ 
gene expression profiles, in order to compute their differential power with target 
phenotypic classes. The whole methodology is preliminary implemented in a system 
called MinePath. MinePath was applied on a set of four gene-expression studies with 
the target of identifying putative mechanisms that underlie and govern the treatment 
response of BRCA patients according to their ER-status profiles. Results were quite 
indicative and strongly supported by the relevant biomedical literature. Our on-going 
work and future R&D plans include: (a) further experimentation with various real-
world microarray studies and different GRNs; (c) elaboration on more sophisticated 
path/gene-expression profile matching formulas and operations; (d) incorporation of 
different gene coding schemes in order to cope with microarray experiments from 
different platforms and nomenclatures; (e) incorporation of a GRN visualization 
component, and (e) porting of the whole methodology in a scientific workflow 
environment enabled by the development of respective Web-Services. 
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