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Abstract. The current work aims to study within a nutrigenetics context the 
multifactorial trait beneath obesity. To this end, the use of parallel Multifactor 
Dimensionality Reduction (pMDR) is investigated towards the identification of 
i) factors that have an impact to obesity onset solely or interacting with each 
other and ii) rules that describe the interactions among them. Data have been 
obtained from a large scale nutrigenetics study and each subject,  characterized  
as normal or overweight based on Body Mass Index (BMI), is featured a 63-
dimensional vector describing his/her genetic variations and nutritional habits. 
pMDR method was used to reduce the initial set of factors into subsets that can 
classify a subject into either normal or overweight with a certain accuracy and 
are further used by corresponding prediction models. Results showed that 
pMDR selected factors associated to obesity and constructed predictive models 
showing a good generalization ability. Rules describing interactions of the 
selected factors were extracted, thus enlightening the classification mechanism 
of the constructed model. 

Keywords: nutrigenetics, obesity, Multifactor Dimensionality Reduction, 
prediction model. 

1 Background 

Obesity has been found to have a positive relationship with cardiovascular disease 
(CVD) mortality in various large scale studies [1-2]. Although obesity onsets mostly 
as a result of certain environmental exposures, e.g. the high in sugars and fats 
westernized nutrition, or the lack of physical exercise, it can be also studied as an 
interactive effect among the genetic profile of a person and its exposure to 
environmental factors. Such interactive effects, studied by the relatively new field of 
nutrigenetics [3], can provide insights on the development of obesity and may trigger 
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forming new strategies for the control of obesity and CVD, not limited solely to 
environmental exposures.  

The importance of indentifying gene-gene interactions towards the study of 
diseases has been highlighted in [4], where it is emphasized that epistasis (gene-gene 
interactions) is ubiquitous in human diseases. Apart from complex gene-gene 
interactions, which can reveal more biological information than individual  
gene analysis , various studies have focused on the additional importance of analyzing 
how gene and environmental factors interact and have an impact towards the 
development of disease [5]. Various gene-environment interactions that are related to 
obesity have been identified in [6], where authors conclude the importance of 
accounting for gene-environment interactions towards the understanding and 
treatment of obesity. Choosing to study gene-environment interactions in obesity has 
also be shown to be a justifiable approach in [7], in which the relationship of genetic 
and environmental factors in a person’s BMI was studied, though without reporting 
over specific genetic variations. The contribution of genes and environmental factors 
towards BMI has been also studied in [8], where the statistical analysis conducted 
identified two polymorphisms that in synergy with fats intake contribute to the 
modulation of waist circumference. 

Studies of gene-gene and gene-environment interactions have some inherent 
difficulties. On one hand, there is a relative difficulty in collecting the appropriate 
environmental and genetic factors for a significant number of subjects. On the other 
hand, there is difficulty in analyzing a problem of such complexity due to the high 
dimensionality of the data [9]. Various advanced computational methods have been 
proposed and applied to identify interactions among genetic and environmental 
factors that may trigger perturbations into biological pathways and contribute to the 
development of diseases [10]. Multifactor Dimensionality Reduction (MDR) is a 
popular non-parametric, model-free method for detecting gene-gene and gene-
environment interactions developed by Ritchie et al. [11]. It has been used for the 
study of gene-gene interactions in various diseases, e.g. hypertension [12], type 2 
diabetes [13] and breast cancer [14]. 

In the current work, the method chosen to analyze the available data towards the 
identification of causal interactions beneath obesity is a more recent algorithm 
developed by Ritchie et al., i.e. parallel Multifactor Dimensionality Reduction 
(pMDR) [15]. The particular implementation offers various advantages in relation to 
the prior Dimensionality Reduction method (MDR), as it scales to handle big datasets. 
In addition, it allows constructing rules that describe the interactions among the 
selected subset of factors, providing more valuable information that enlightens the 
interplay of the involving features. This study employs a large scale dataset of more 
than 2300 subjects and targets i) associations of obesity and interaction rules from a 
pool of 63 features describing gender, various nutritional elements and genetic 
variations that have been previously individually associated with obesity and  
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cardiovascular health [16] and ii) corresponding predictive models that can  
distinguish subjects characterized as normal or overweight based on Body Mass Index 
(BMI). Regarding previous findings, it comes to take one step further our previous 
work in [9], in which ANN-based methods were used select the most informative 
features from the same nutrigenetics data and construct predictive models for obesity 
status.  

2 Dataset 

The dataset employed comes from a previous large scale nutrigenetics study [16].  It 
includes data for 2341 white people, and for each subject a total of 38 nutrition 
measurements have been collected, e.g. daily intake of cholesterol, supplements of 
metals, in addition to the recording for 24 genetic variations (Single Nucleodite 
Polymorphisms-SNPs, or Insertions/Deletions) that have been found to have an 
influence on daily requirements of various nutritional elements for improving various 
CVD health aspects [16]. Nutritional elements, genetic variations and additionally 
gender complete the set of 63 input factors. Each subject is characterized as 
overweight or normal, according to his/her BMI (calculated as weight (Kg)/height2 
(m2)). 1464 subjects were labeled as overweight (BMI > 25), and the remaining 877 
as normal (BMI ≤ 25). Before analyzing the data by pMDR, it was necessary to do a 
pre-processing of the data to convert them into categorical values. Nutritional factors 
from intake of supplements were classified into four classes, which are bottom 33.3%, 
middle 33.3% and top 33.3% of non-zero values and zero, while the rest of the 
nutritional factors were classified according to the quartiles.  Gene variations are 
categorical variables by themselves, e.g. a SNP corresponds to a three state 
categorical feature (AA/GG/AG). For each categorical variable, numerics (e.g. 1,2 
and 3 for a three class variable) were used when importing data to pMDR. An 
extensive description of the dataset used can also be found in [9]. 

3 Methods 

The current work investigates the use of the pMDR algorithm as a computational 
method to derive prediction models from the factors measured for each subject in the 
dataset and identify interactions among the elements of the models. The method uses 
a new algorithm in relation to the previous implementation of MDR that is able to 
analyze and identify interactions among factors from large datasets. The 
implementation is done with the Message Passing Interface (MPI) that enables 
parallel processing into multiple processors, which can make possible the handling 
high-complexity problems. An additional advantage of the method is that it can 
extract rules of interaction, capturing how the various combinations among the  
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categorical values of the reduced features can predict a two-state result. The pMDR 
algorithm can be used for extremely large datasets of individuals and with many  
variable states, making feasible the analysis of small order interactions in very large 
datasets. The analysis of higher-order interactions in large datasets is also feasible, but 
is demanding in machine computational power and running time [11]. 

The pMDR algorithm is a non-parametric and model-free method that uses cross-
validation to derive results. Firstly, data are divided into the training and testing set 
The desired number of factors to comprise the reduced model is also specified. For all 
possible groups with this number of elements from the initial set of factors, the 
algorithm derives the various combinations of states among them. For example, for 
the two-factor combinations, the model consisting of a nutritional factor with four 
categorical states and a gene factor with three different types of variations has twelve 
different states of combinations. Then, each individual from the subjects is grouped to 
the combination that matches its characteristics. In this way, it can be calculated for 
each combination the ratio of cases to controls (in our case, obese to non-obese 
subjects). Then, this ratio is compared to the general ratio of cases to controls for the 
whole data set. If it is higher or equal to the general ratio, then the particular 
combination is characterized as high risk, else as low risk. Given the true labeling of 
subjects, sensitivity and specificity are calculated for each model and are used to 
compare the performance amongst the various models. The so-called balanced 
accuracy is the average of sensitivity and specificity of the model and it is calculated 
for each model for both the training and testing set in each cross-validation step. In 
addition, for each model there is an estimation of the prediction error in the testing 
set, based on the proportion of mislabeled subjects by the model. In the final step of 
the algorithm, the single best model across all combinations and up to the maximum 
model order selected, i.e. maximum number of factors included, is selected based on 
the highest cross-validation consistency and prediction accuracy [15]. pMDR allows 
the configuration of various execution  parameters, which can have an impact on both 
the robustness of the method as well as the computational cost. For example, 
increasing the number of cross-validations augments the computational cost, yet 
having a sufficient number of cross-validations is necessary to ensure the validity of 
results. pMDR was used here in a cluster of  two processing nodes of specification 
Intel(R) Xeon(TM) CPU 3.00GHz dual-core. 

4 Results  

In this part we present the results obtained by the pMDR method. The particular 
execution was configured to include models consisting up to seven factors 
(maximum order: 7) from the total 63 included in the dataset. In addition, it was 
selected to perform five-fold cross-validation (at each cross-validation step the best 
model is also kept in order to measure cross validation consistency, see following 
paragraph).  
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Table 1. Selected models (of order:1,..,7), based on five-fold cross-validation. For each model, 
average predicted balanced accuracy, average prediction error (correspond to measurements in 
testing sets) and CV consistency are presented. 

                                                                                Average Prediction    Average Prediction         CV  
                         Balanced Accuracy               Error               consistency 

Factors           (%)  (%) 

Gender (1)                            59.34                      43.83                          5   

Saturated Fat-                                                                                                                           
Food Only, Gender (2)                                      60.57                      37.99                          5   

Vitamin B6-Food Only,                                                                                                                     
Saturated Fat-Food Only, Gender (3)                  61.90                      38.30                          4   

Vitamin B6,  
Vitamin A, Saturated Fat, Caffeine (4)                            52.87                      46.49                          1   

Vitamin C-Food Only,                                                                                                                       
Omega 3, Cholesterol, Caffeine, Calcium (5)           55.27                      43.72                          3   

Vitamin B12-Food Only,  
Vitamin A-Food Only, Refined Carbohydrate,  
Folic Acid-Supplement Only, Cruciferous, Caffeine (6)     51.00                      47.16                          1   

Vitamin D - Food Only, Vitamin C-, 
Food Only Refined Carbohydrate, Omega 3,  
Cholesterol, Caffeine, Calcium - Supplement Only (7)     53.08                      44.53                          1   

Table 2. Interactions among factors included in the best model (For Saturated Fat – Food Only, 0 
corresponds to the lowest intake and 3 to the highest intake) 

 
IF Saturated Fat – Food Only = 0 AND Gender  = Male    THEN STATUS = Overweight 

IF Saturated Fat – Food Only = 0 AND Gender  = Female THEN STATUS = Normal 

IF Saturated Fat – Food Only = 1 AND Gender  = Male    THEN STATUS = Overweight 

IF Saturated Fat – Food Only = 1 AND Gender  = Female THEN STATUS = Normal 

IF Saturated Fat – Food Only = 2 AND Gender  = Male    THEN STATUS = Overweight 

IF Saturated Fat – Food Only = 2 AND Gender  = Female THEN STATUS = Normal 

IF Saturated Fat – Food Only = 3 AND Gender  = Male    THEN STATUS = Overweight 

IF Saturated Fat – Food Only = 3 AND Gender  = Female THEN STATUS = Overweight 

 

After completing all cross-validation steps the algorithm evaluates the cross-
validation consistency (CV consistency: number of occurrences as best model in the 
cross-validations) and the average values for balanced accuracy and prediction error 
for each model. Final results are shown in Table 1. The method identifies the single 
best model based on the highest CV. In case two or more models have the same CV 
value the single best model is determined based on the highest average predicted 
balanced accuracy and least prediction error. The single best model obtained here uses 
two factors corresponding to saturated fat – food only (factor 20, corresponds to 
saturated fat contained in food and not in supplements, see [9], [16] as well ) and 
gender (factor 1). pMDR outputs in form of rules the identified interactions among 
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the factors that comprise each model. For the single best model [Saturated Fat - Food 
Only, Gender] the resulting rules are shown in Table 2. The combinations of factors 
states that have not resulted into a classifiable status (Normal/ Overweight) have been 
omitted. 

5 Discussion  

The average prediction balanced accuracy obtained in testing sets, which is the 
selected measure for the evaluation of the models, is for the single best model almost 
61%. The average prediction error for the same model is about 38%. In addition, the 
best model is consistently the best in all five cross-validations steps that took place. 
These values are satisfactory given that dimensionality reduction analysis has been 
conducted and that models are accompanied by rules that enlighten the classification 
mechanism of the selected model.  

Interpreting the rules generated by the algorithm for the selected model and 
reported here, we can derive that high values of saturated fat (categorical value 3) can 
be associated with obesity in both genders, while lower values (categorical value 1) 
seem to affect males the most. 

Comparing the results of the pMDR algorithm with the previous methods of PDM-
ANN and GA-ANN used in [9], it is noted that the balanced accuracy of the best 
model is comparable to the mean accuracy of training with the ANN-based methods, 
although these do not match directly, since the methods do not use exactly the same 
fitness measures. The seven-order model consists of factors that are included in the 
results of methods PDM-ANN (apart from caffeine) and GA-ANN. In addition, 
method PDM-ANN (when 5 factors are used) has three factors in common with the 5-
dimensional model obtained by pMDR. Thus, there is partial accordance of the 
pMDR results with the other methods, yet it has to be evaluated for higher-order 
models to confirm the relevance of results. It’s noted here that the 7-order model 
obtained by pMDR comprised environmental factors only, without any genetic factors 
being included and did not highlight gene-environment interactions. This has to be 
further examined by obtaining higher order models by  pMDR method, which needs 
further available computational power (e.g. running on a Grid).  On the contrary, the 
methods used in our previous study [9],  stochastic based or serially selecting features, 
could give higher order models, in which genetic variations were included, too. 

The computational needs of the algorithm are high. An increase by one of the 
number of factors per combination increases disproportionately the necessary running 
time. When the algorithm was set to run for eight factors the running would took 
more four weeks to complete in the available cluster machine. Thus, the algorithm 
seems satisfactory to reveal low order interactions in such a large dataset, while 
demands very powerful computers to run for higher order models.  

Future work shall include using pMDR to find higher-order models together with 
the relevant rules of interactions. This would enable the comparison of the results 
with the subset of factors derived from the PDM-ANN and GA-ANN methods in our 
previous work.. This is a very computationally intensive task and could be become 
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possible by executing the pMDR algorithm in parallel processes in a high-
performance computer cluster or Grid, appropriate for large-scale bioinformatics 
applications. Future work may also combine the approach of the current work with 
the previous ones conducted on the same dataset using the ANN-based methods. The 
most important factors identified by the latter could be passed into pMDR, in order to 
construct rules of interaction among them and gain more information. 

6 Conclusions 

In this study, the pMDR algorithm was used to analyze a large set of data from a 
nutrigenetics study on almost 2300 people, for all of which 63 genetic/nutritional 
factors, gender and BMI were recorded. The dimensionality reduction that was 
feasible with the available computing processing power reduced the 63 factors into 
seven. From the models derived, the one showing the greatest accuracy and least 
prediction error consisted of two factors, namely saturated fat intake and gender. The 
information from the remaining higher order models is also informative, as it gives 
insights about the interactions among them towards the development of obesity. The 
higher order models showed some consistency in the factors included with the ones 
identified by the previously ANN-based methods applied to the same dataset. 
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