
Evolutionary Optimization of a Neural Network

Controller for Car Racing Simulation

Damianos Galanopoulos, Christos Athanasiadis, and Anastasios Tefas

Department of Informatics, Aristotle University of Thessaloniki
Box 451, 54124, Greece

tefas@aiia.csd.auth.gr

Abstract. In this paper a novel method for car racing controller learn-
ing is proposed. Car racing simulation is an active research field where
new advances in aerodynamics, consumption and engine power are mod-
elled and tested. The proposed approach is based on Neural Networks
that learn the driving behaviour of other rule-based bots. Additionally,
the resulted neural-networks controllers are evolved in order to adapt
and increase their performance to a given racing track using genetic
algorithms. The proposed bots are implemented and tested on several
tracks of the open racing car simulator (TORCS) providing smoother
driving behaviour than the corresponding rule-based bots and increased
performance using the evolutionary adaptation.

Keywords: TORCS, Neural networks, Genetic algorithms, Evolution-
ary Optimization.

1 Introduction

Nowadays, video games are becoming more and more important, as a hot con-
sumer product, as well as a great opportunity for research in artificial intelligence.
The main goal is to offer fun to the player. In previous years this goal has been
achieved partly through the visual realism and interesting game scenarios. But
every video game player knew that the current AI in the games was way far from
the actual human behaviour. When we are playing a game versus one or more
NPC (non-character player) we can easily realize that we are not playing versus
another human because either the other player is too simple to beat, figuring
out a specific efficient strategy, or the AI is so complicated that the human loses
every time. Artificial intelligence in computer games is infused into non-playable
characters with a view to giving the human player the illusion of a clever human
opponent. Initially we have to create a NPC that imitates the behaviour of a
human player [3]. However, we have to bear in mind that the NPC must also
have the ability to adapt depending on the current state and environment and
the current opponents in the game. Computational intelligence methods can be
implemented to deal with the adaptation task. Such methods can be retrieved
from evolutionary algorithms and Neural Networks [2].

I. Maglogiannis, V. Plagianakos, and I. Vlahavas (Eds.): SETN 2012, LNAI 7297, pp. 149–156, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

tefas@aiia.csd.auth.gr


150 D. Galanopoulos, C. Athanasiadis, and A. Tefas

Previous approaches to car racing were already developed for the forerunner
of TORCS, the robot auto racing simulator (RARS) [7]. For example, Stanley
et al. [8] developed a car racing strategy that depended on range-finders and
developed a sensory-motor mapping with the incremental neural evolution of
augmenting topologies (NEAT) approach.

The Cognitive BOdySpaces for Torcs-based Adaptive Racing (COBOSTAR),
which was developed by B. Martin V. Butz and Thies D.Lonneker [9], is divided
in two parts: on-track optimization and off-track optimization. Actually, they
implemented heuristic functions for mapping input data into decision. These
functions were different when the controller was on-track or off-track.

Another approach has been proposed in [4]. The idea behind this bot was to
have a driving architecture based on a set of simple controllers. Each controller is
applied as a separate module in charge of a basic driving action. Two important
modules are the learning module, which finds where the bot have to increase
or reduce its speed, and the opponents management module, which adapts the
agent behaviour when the opponents are close.

Luigi Cardamore’s approach [10] consists of an evolved neural network, im-
plementing a basic driver behaviour, compounded with code for basic tasks such
as the start, the crash-recovery, the gear change, and the overtaking. They use
neuroevolution of augmented topologies(NEAT)[8] for predicting target speed
and target position for a given input configuration. The implemented fitness
functions is the error between the actual values and the predicted ones.

The combination of a fuzzy logic module with a classifier module and a finite
state machine is proposed [11] with a view to tackling the great variety of TORCS
commands from Diego Perez and Yago Saez.

The basic idea in our controller is to use Neural Networks for the decisions
of the driver bot. That is, the bot is trained using back-propagation in a single
hidden layer NN. The training data are collected by using other bots that are
using rule-based AI to control the car. That is, the proposed bot is trained by
other bots. We expect to enhance the performance of the rule-based bots since
the NN will smoothly imitate their behaviour. Moreover, in order to improve its
performance, the proposed bot has the ability to evolve its NN using evolutionary
algorithms. That is, the proposed bot, firstly, learns from other bots how to drive
and adapts the weights of its NN using genetic algorithms in order to improve its
lap time for given racing tracks. The novelty of our method is the use of the time
performance as the fitness function, which changes the NN weights depending
on the current lap time.

2 TORCS Environment

The open race car simulator (TORCS) provides an open source car racing en-
vironment with a very realistic simulator that has a sophisticated physic engine
which takes into consideration real car racing issues such as fuel consumption,
collisions or traction. Besides that, TORCS offers a very realistic game-play and
graphics. It is a well designed simulator which can be compared with the finest



Evolutionary Optimization of a NN Controller for Car Racing Simulation 151

race game titles. Additionally, TORCS provides a very flexible and simple client-
server architecture. Server stands for the game’s functions, and client stands for
the car agent handling. The above characteristics justify why it has been used
for research purposes in the scientific community, especially for solving the simu-
lated racing car challenge task. In 2011, three different challenges were held; the
EVO-2011 in Torino, ACM GECOO-2011 in Dublin and the IEEE CIG-2011 in
Seoul.

The first approaches appeared, were hand-crafted rule-based and only slightly
optimized on several aspects. Our approach in this challenging task is based on
Neural networks combined with evolutionary algorithms. We tried to tackle the
challenge of imitating other players or car agent behaviour.

We have used two different controllers, as trainers of the proposed bot. The
first controller is a simple rule-based controller (named ”Simple Driver”), which
is offered with the client server architecture, and the second one is called ”Sim-
plicity”. The proposed controller is based on a feed forward ANN (Artificial
Neural Networks) that was trained with data generated by other controllers
using back-propagation. The final step in our method was to adopt modified
genetic algorithms in order to achieve better results.

TORCS consists of a server component that supports the general TORCS
setup [1] and returns information sensors about the controller and the track. The
client component uses these information to apply its strategy. The controllers
(clients) run as external programs and communicate with the server with UDP
connections. At each game tic the controller receives sensor data that corresponds
to the car’s current state and its surrounding environment (the tracks and the
components). The controller has to calculate four output parameters (the wheel
steering, the gas pedal, the fuel level and the break pedal). Its strategy depends
on the current input (information from sensors). In the proposed method we use
learning methods in order to build output commands.

The sensors novelty is in that they do not contain the whole track informa-
tion, but they carry only simulated local information instead. In particular, the
available sensors are an angle sensor, which specifies the current angle between
the car direction and the track axis, the current speed in longitudinal and trans-
verse axes of the car, 19 range sensors, which sample the free track space in
front of the car and they are only valid while on track, 36 opponent sensors,
which notice opponents around the car, the current engine speed in rounds per
minute, the current gear, the track position with respect to the track edges, and
the current rotation speed of the four wheels. Moreover, there is further rac-
ing information available including the current lap time, the damage of the car,
the distance from the start line along the track line, the total distance raced, the
amount of remaining fuel, the last lap time and the standing in the race. For the
car control, there is a gas pedal and a brake pedal, gear shifting, and steering
values available.

Thus, the agent strategy cannot receive information about tracks morphology
(such as which curve comes next) and it depends only on the local information
(the sensors they were described before).



152 D. Galanopoulos, C. Athanasiadis, and A. Tefas

3 Proposed Approach

Our agent was trained by applying two rule based controllers in order to collect
data fast and for the different sensors cited in the previous section. Data collec-
tion was made for several game tracks. More specifically, we use two different
tracks, named F-Speedway and CG-Speedway No1 for data capturing. For each
track we used approximately 10.000 input states for each controller. Each input
state is composed of 9 input data that represent the controller’s environment and
two output values that correspond to controller acceleration and wheel steering.
These two outputs are in fact the desired outputs of the designed Neural Net-
works. For each output ”label”, we created a separate Neural Network. That is,
one neural network decides about the acceleration and the other decides about
the steering. Values are normalized in [−1, 1].

3.1 Off-line Neural Network Learning by Imitation

The first part of our work was to imitate controller’s behaviour by implementing
Artificial Neural Networks. Initially we obtained the data from the controller
we wanted to imitate (trainer) and a neural network was trained with the back-
propagation algorithm. We used neural networks with a specific structure [5].
Hecht-Nielsen [6] proved that one hidden layer is sufficient to approximate a
bound continuous function with a specific mean square error. Thus, we chose to
generate our neural network with one hidden layer with 50 neurons. The number
of neurons was selected using cross-validation in the training set in order to avoid
over-training. Using the previously described structure we reduced the time and
code complexity. As an activation function for the NN we have used the logistic
function f(t) = 1

1+e−t and the learning rate h was set to 0.5 and the momentum
m to 0.1. The Neural Network weights determine the controller decisions, which
will define the behaviour of our bot in real-time gaming.

Using the back-propagation algorithm we were able to train neural networks
to return the desired output data. Thus, we can use the outputs of the trained
neural networks in order to control the acceleration and steering of the car. In
fact we are using the following expression:

s =
2

1 + e(speedcurrnet−speedtarget)
− 1

where speedcurrent is the speed in the previous game tic and the speedtarget is
the output of the Neural Network every game tic. This expression takes values
in [−1, 1]. When this expression returns 1, it means that our controller has to
fully accelerate and when it returns -1 controller has to fully break. Similarly, we
utilize the same expression for the wheel steering. The objective was to succeed
convergence in bots behaviour (between the controller that was used as trainer
and our agent). The next step is to modify the NN weights in order to improve
controller’s behaviour in unknown tracks and simultaneously to increase agent
steering smoothness and reduce lap time. To do so, we use adaptation of the NN
weights using genetic algorithms.



Evolutionary Optimization of a NN Controller for Car Racing Simulation 153

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Epochs

m
ea

n 
sq

ua
re

 e
rr

or

 

 

SimplicityspeedMSE
SimplicitysteerMSE

Fig. 1. NN convergence

3.2 On-line Learning Using Genetic Algorithms

Genetic algorithms(GA) are heuristic methods that try to mimic the natural
process of evolution. Genetic algorithms became popular through the work of
John Holland in the early 1970’s. Actually, GA try to generate solutions to
optimization and search problems. These solutions are evaluated by a fitness
function. To do so, the genetic operations of mutation and cross-over attempt
to find an optimal solution. The operation of mutation and cross-over of GA are
described in [12].

In our work we employed GA in order to improve the performance of the
neural networks trained in the first stage. Thus, the GA try to optimize the
fitness function by searching for better weights for the trained NNs. We use as
a fitness function the currentLapT ime, which can be returned from the game
with the goal to evaluate the performance of current weights. That is, the trained
NNs are evolved trying to achieve the fastest lap.

When the evolution begins we store three different NN weight sets for acceler-
ation control and three for steering control and the lap time that the controller
achieved with those weights. These initial weights that will be used for producing
the offsprings are produced by training the NN with different learning param-
eters (e.g., learning rate, initialization, etc). Then, we modify these weights by
using mutation and cross-over. Mutation is simulated by adding uniform random
noise (transported to [−1, 1] ) to certain probabilistically selected weights. The
weights are normalized in [−1, 1]. We add multiplicative noise on the selected
weights as follows:

weightsnew = weights+ weights ∗ noise

k

, where k is a normalization constant which affects the impact of noise. That is,
the selected weights are slightly increased or decreased according to the noise
value.

The crossover operation is implemented by combining probabilistically se-
lected solutions (NN weight sets) according to their fitness. The selected NNs
exchange randomly selected weights in order to create their offsprings. The agent
uses the new weights in three consecutive laps and the time achieved is used as
fitness function. The selection procedure keeps only the three best offsprings



154 D. Galanopoulos, C. Athanasiadis, and A. Tefas

weights and replace the previous weights accordingly. Our anticipation here is
to optimize the current lap time every three-laps. This is expected since GA
at least keeps the initial weights in case of non improvement. The procedure is
repeated every three laps. We have noticed that the lap time is not continuously
decreasing. When we test the same weights multiple times the returned lap time
is not exactly the same. Thus, we expect some small fluctuations in the conver-
gence. We let our agent to repeat the above procedure many times. For every
track, we have tested the controller for 40 laps.

4 Experiments

In our experiments we used several tracks that TORCS offers. For the sake of
convenience we are going to present results for the following tracks Oval B-
Speedway, F-Speedway, CG-Speedway No1. Two benchmark observation com-
parisons to test and reveal differences between trainer and trainee are the current
lap time, that indicates the speed performance, and the distance from the track
axis, which indicates the wheel steering performance. Our expectations in those
two observations are, firstly, our bot to achieve better lap times and, secondly,
to accomplish a more smooth driving trajectory. In Figures Fig. 2(a), Fig. 2(b),
Fig. 3(a), Fig. 3(b) we can see the performance of the trainer and the trainee
in lap time and smooth driving behavior in two TORCS tracks, namely, CG-
Speedway-1 and F-speedway.

0 5 10 15 20 25 30 35 40
48

50

52

54

56

58

60

62
CG−Speedway−1

Laps

T
im

e 
(s

ec
)

← Best Time

 

 

Genetic optimization
Neural Network 
Simplicity

(a) CG-Speedway1

5 10 15 20 25 30 35 40
48

50

52

54

56

58

60

62
Best Genetic NN produced vs Genetic trainee

Laps

T
im

e 
(s

ec
)

← Best Time

 

 

Best offspring NN

Genetic optimization

(b) Best offspring NN vs Genetic opti-
mization

Fig. 2.

In Figure 2(a) the lap-time for 40 laps on the CG-Speedway-1 track is shown.
The three curves correspond to the performance of the Simplicity driver (trainer),
the trained Neural Network that learns from the behavior of the Simplicity driver
and the best adapted NN for each generation during the genetic optimization
for 40 laps. In Figure 2(a) it is clear that the the trained NN achieves better
lap times than the rule-based Simplicity driver. The performance is improved on
average by two seconds. Moreover, it is obvious that genetic optimization further
improves the performance of the NN trainee and, on average, the performance is



Evolutionary Optimization of a NN Controller for Car Racing Simulation 155

improved by 5 seconds compared to the Simplicity driver. The best performance
in a single lap is observed in the 34th lap during the genetic optimization. That
is, the trained NN has learned the driving behavior from its rule-based trainer
and enhanced his performance due to smoother driving trajectories as we will
see in the following. Moreover, by genetically evolving its weights during the
actual driving procedure the proposed NN based driver further improved the
lap-time and during the genetic optimization the global minimum lap time has
been reached in the 34th lap.

The NN that achieved the best performance during the genetic optimization
is selected as the best offspring and evaluated again for 40 laps. In Fig. 2(b)
we compare the performance of the best NN’s for each generation during the
evolutionary optimization with the overall best NN that was produced on the
34th lap and was the outcome of the evolutionary optimization. It is clear that
the genetically optimized NN achieves better results. However, for the tested
40 laps it cannot reach the best time achieved during the optimization. This is
easily explained since the performance of the trained drivers is not always the
same and we search for a bot that is on average better than the trainer.

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4
Distance from Track axis

Lap Length

T
ra

ck
 A

xi
s

 

 

Track Axis
Simplicity trainer
Genetic traineeExit point

(a) CG-Speedway1 Distance to Track Axis

0 500 1000 1500 2000 2500 3000 3500
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Distance from Track axis

Lap Length

T
ra

ck
 A

xi
s

 

 

Track Axis

Simplicity

Genetic

(b) F-Speedway Distance to Track Axis

Fig. 3.

In Figures Fig. 3(a), Fig. 3(b) we test the smoothness of genetic trainee and
simplicity driver trainer in two different tracks. What we can notice, especially
in Fig. 3(b), is that the trainee overcame the rule-based decision behaviour and
simulated a smoother driving trajectory. Moreover, an interesting noticeable
observation is highlighted in Fig. 3(a). At the 980 meter of track there is a
sharp turn where the rule-based trainer came out of the track in every lap. The
neurogenetic bot manage to stay in the track bounds and save time achieving a
smoother driving trajectory at that point.

5 Conclusion

In this work we proposed a computational intelligence method using the com-
bination of neural networks with genetic algorithms so as to develop an agent
which can be trained while playing The Open Race Car Simulator (TORCS),



156 D. Galanopoulos, C. Athanasiadis, and A. Tefas

attempting, this way, to achieve higher performance compared with the perfor-
mance of its trainer bot. Our results show that we managed to create a controller
that enhances the behaviour of its trainer in regards to acceleration, achieving
better lap -times from its trainer and steering by implementing a smoother driv-
ing trajectory. Moreover, by utilizing evolutionary adaptation we managed to
improve even more the performance of our bot and to gradually achieve the best
performance.

References

1. Torcs the open race car simulator, http://torcs.sourceforge.net/
2. Petrakis, S., Tefas, A.: Neural Networks Training for Weapon Selection in First-

Person Shooter Games. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN
2010, Part III. LNCS, vol. 6354, pp. 417–422. Springer, Heidelberg (2010)

3. Laird, J.E., Van Lent, M.: Human-level AI’s Killer Application: Interactive Com-
puter Games. In: Proceedings of the Seventeenth National Conference on Artificial
Intelligence and Twelfth Conference on Innovative Applications of Artificial Intel-
ligence, pp. 1171–1178 (2000)

4. Onieva, E., Pelta, D.A., Alonso, J., Milanés, V., Pérez, J.: A modular parametric
architecture for the TORCS racing engine. In: Proceedings of the 5th International
Conference on Computational Intelligence and Games (CIG 2009), pp. 256–262.
IEEE Press, Piscataway (2009)

5. Haykin, S.S.: Neural networks and learning machines, 3rd edn. Multi Layer Per-
ceptron, pp. 152–258 (2008)

6. Hecht-Nielsen, R.: Theory of back-propagation neural network. In: Proc. of the Int.
Conf. of Neural Networks I, pp. 593–611 (1989)

7. Robot auto racing simulator (2006), http://torcs.sourceforge.net
8. Stanley, K., Kohl, N., Sherony, R., Miikkulainen, R.: Neuroevolution of an automo-

bile crash warning system. In: Genetic and Evolutionary Computation Conference,
CECCO 2006, pp. 1977–1984 (2006)

9. Martin, B., Butz, V., Lonneker, T.D.: Optimized Sensory-motor Couplings plus
Strategy Extensions for the TORCS car Racing Challenge. In: IEEE Symposium
on Computational Intelligence and Games, CIG 2009, pp. 317–324 (2009)

10. Cardamone, L., Loiacono, D., Lanzi, P.L.: Applying cooperative coevolution to
compete in the 2009 TORCS Endurance World Championship. In: Evolutionary
Computation (CEC), pp. 1–8. IEEE (2010)

11. Perez, D., Saez, Y., Recio, G., Isasi, P.: Evolving a rule system controller for au-
tomatic driving in a car racing competition. In: Symposium on Computational
Intelligence and Games (CIG), pp. 336–342. IEEE (2009)

12. Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. MIT Press,
Cambridge (1992)

http://torcs.sourceforge.net/
http://torcs.sourceforge.net

	Evolutionary Optimization of a Neural Network
Controller for Car Racing Simulation
	Introduction
	TORCS Environment
	Proposed Approach
	Off-line Neural Network Learning by Imitation
	On-line Learning Using Genetic Algorithms

	Experiments
	Conclusion
	References




