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Abstract. This paper proposes a method for computing a routing policy-value 
function for effective information sharing and searching in arbitrary networks 
of agents through collaborative reinforcement learning. This is done by means 
of local computations performed by agents and payoff propagation. The aim is 
to ‘tune’ a network of agents for efficient and effective information searching 
and sharing, without altering the topology or imposing an overlay structure.  

1 Introduction 

‘Tuning’ networks of agents to perform information searching and sharing requires 
agents to gather the necessary knowledge so as to decide their routing policies and 
propagate requests to the right agents, minimizing the searching effort, thus increasing 
the efficiency (i.e. speed/cost ratio) and the efficacy (i.e. retrieved results) of the task.  

Considering to be a decentralized control problem, information searching and 
sharing in large-scale systems of cooperative agents is a hard problem in the general 
case: The computation of an optimal policy, when each agent possesses an 
approximate partial view of the state of the environment and when agents’ 
observations and activities are interdependent (i.e. one agent’s actions affect the 
observations and the state of an other) [2], is hard. This fact, has resulted to efforts 
that either require agents to have a global view of the system [14], to heuristics [3], to 
the pre-computation of agents’ information needs and information provision 
capabilities for proactive communication [15], to localized reasoning processes built 
on incoming information [11,12,13], to mathematical frameworks for coordination, 
whose optimal policies can be approximated for small (sub-) networks of associated 
agents [10], and to reinforcement learning algorithms for hierarchical peer-to-peer 
information retrieval systems [16]. On the other hand, there is a lot of research on 
semantic peer to peer search networks and social networks many of which deal with 
tuning a network of peers for effective information searching and sharing. They do it 
mostly by imposing logical and semantic overlay structures.  

To address the limitations (related to scalability and the assumptions made) of the 
above-mentioned approaches, the information sharing and searching algorithms 
reported in [8,9] use routing indices and agents’ profiles. There are three important 
issues regarding these methods: (a) Given that random information sharing and 
searching is a hard competitor for any such task [7], the effectiveness of these 
methods concerning the number of information items retrieved is not that high, even 
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if they manage to gradually increase the efficiency of the searching task. (b) Agents 
do not consider the cost or delay of their task even if the overall benefit increases. For 
instance, requests may be propagated via specific agents whose load (thus throughput 
time) increases; and finally, (c) the convergence of the method cannot be guaranteed.   

To address the limitations of previous works, this paper proposes using the agent-
based update of the edge-based decomposition Sparse Cooperative Q-learning method 
proposed in [5], so as agents to estimate the value of their routing policies in a 
distributed and scalable way, by exploiting the dependencies of their routing actions. 
The proposed method, to a greater extent than other proposals concerning the use of 
reinforcement learning techniques for information retrieval [16] exploits the structure 
of the problem by means of coordination graphs [4] and thus, can result to very 
effective tuning, even to non-hierarchical (arbitrarily organized) systems. Also, the 
proposed approach generalizes approaches that exploit routing indices [8,9] in two 
directions: (a) It estimates routing policy-value functions via payoff propagation, and 
(b) it has the potential to incorporate any problem/context specific parameter 
concerning routing actions value.  

2 Problem Specification 

The setting: Let N={A1, A2, …, An} be the set of agents in the system. The network of 
agents is modelled as an acquaintances graph G=(N,E), where N is the set of agents 
and E is a set of bidirectional edges denoted as non-ordered pairs (Ai,Aj). The 
neighbourhood of an agent Ai (denoted by N(Ai)) includes all the acquaintances of Aj 

such that (Ai,Aj)∈E. Each edge is associated with a communication cost, Cost(Ai,Aj) 
and each agent has a specific service rate SR(Ai) that specifies its maximum 
throughput rate (i.e. the number of queries that it processes in the unit of time). The 
(mean) delay of each agent Ai to process a query, is determined as follows: Delay(Ai)= 
Number_of_Waiting_Queries/SR(Ai). We assume that the cost and the delay are 
associated to comparable values. It must be noticed that in contrast to costs, delays 
change over time.  

The agents in the network share the same set of information categories C. Each 
agent assigns a value (i-Value) to each information category. This specifies the 
reward one gets by obtaining an information item from that category. Also, any agent 
has an expertise, which is represented by a specific information category, and it 
possesses a unique information item (e.g. a document) of that category. Additionally, 
we consider a set of k queries {q1,…, qk}. Each query asks for an information item 
under a specific category c in C, and is represented by a triple <id,c,TTL>, where id is 
the identity of the query, and TTL (Time To Live) is a positive integer that specifies 
the maximum number of hops that any query can reach. 

Definitions: Considering a specific query q=<id,c,TTL>, a search session for this 
query is associated with a specific path in the network and starts when the query is 
generated by a specific agent and finishes either when the query has been answered 
(served) or when it has traversed a path in the network whose length is equal to the 
specified Time To Live (TTL) without being served (unfulfilled).  

At a specific point of time, the state of a search session for a specific query 
comprises the variables path (which initially is empty, and each agent adds its id in 
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the path before propagating the query), ttl (which is initially equal to TTL and it is 
reduced by one for each hop), and the variable agent (specifying the agent currently 
processing the query). Thus, given a session at state <path,ttl,Ai>, and in case Ai 
routes the query to Aj, then the new state for this session is <Aj⊕path, (ttl-1), Aj>, 
where (Aj⊕path) is the extension of path with Aj. The joint state comprises the 
variables of all search sessions.  

The finite set of routing actions available to each agent Ai with respect to the query 
q correspond to its G-neighbors N(Ai): More precisely, given the state of the search 
session <path,ttl,Ai> for q=<id,c,TTL>, Ai may send that query to any of its G-
neighbors that has the “best” potential among neighbours to route a query for c so as 
to be served with a minimum cost and delay (compared to the other G-neighbors) in 
ttl’≤(ttl-1) hops (i.e. in less hops than those required).  

Coordination Graphs: In the following we consider that agents are organized in 
coordination graphs [4]. Generally, these are structured according to the 
dependencies between agents’ actions, revealing the structure of the coordination 
problem: Coordination graphs allow decomposing a global value function for any 
joint action of agents, into a sum of local functions: Each local function depends on 
the combination of actions of the involved agents. In contrast to the acquaintance 
graph G=(N,E), we denote coordination graphs as CG=(NCG,ECG). Also, when it is not 
clear, we distinguish between G-neighbors (i.e. neighbors in the acquaintance graph) 
and CG-neighbors (i.e. neighbors in the coordination graph).  

Given the acquaintance graph G, the coordination graph CG=(NCG,ECG) is as 
follows: Each node in NCG corresponds to an agent Ai in the acquaintance graph with 
two additional attributes: The type of the requested information and the ttl of the 
request (we denote such an agent by Ai,c,ttl, where c∈C and ttl=1...TTL). Therefore, for 
each agent in G there are |C|×TTL nodes in CG. Two nodes Ai,c,ttl Aj,c’,ttl’ with i≠j are 
connected with a directed edge (Ai,c,ttl Aj,c’,ttl’) iff Aj is in N(Ai), c=c’ and ttl’<ttl. In this 
case Aj,c’,ttl’ (resp. Ai,c,ttl ) is a CG-neighbor (resp. inverse CG-neighbor) of Ai,c,ttl (resp. 
of Aj,c’,ttl’). Indeed, the routing action of Ai given the state <path,ttl,Ai> of a search 
session for q=<id,c,TTL>, denoted by acti,c,ttl, depends on the routing action actj,c,ttl’, 
ttl’≤(ttl-1), of any G-neighbor Aj, given that, the return received by Ai, in case it 
propagates the query to Aj, depends on the routing decision of Aj.  

It must be noticed that CG is not constructed in an explicit way by the proposed 
method. CG provides a structure to the information searching and sharing task and 
differs substantially from G: (a) While routing actions concern propagating queries in 
the “actual network”, i.e. in G, the necessary information for valuating routing actions 
is gathered and propagated in CG; (b) CG has |C|×TTL more nodes than G; (c) if Aj is 
in N(Ai), then not any pair of nodes Ai,c,ttl Aj,c’,ttl’ is connected (e.g. there is not any 
edge from Ai,c,3 to Aj,c,5); (d) CG is a directed and acyclic graph: Indeed, there can not 
be any path (Ai,c,ttl ,…, Ai,c,ttl) since a pair of nodes Ai,c,ttl Aj,c,ttl’ is connected iff ttl’<ttl. 

The problem: Each agent Ai has a finite set of routing actions Acti
1. This set comprises 

all the routing options an agent has for any information category and state of a search 

                                                           
1  To distinguish symbols, we have used lowercase letters for atomic 

states/actions/policies/rewards, uppercase letters for joint states/actions/policies/rewards and 
uppercase-bold letters for sets of states/actions/policies. 
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session. The joint action is the combination of agents’ individual actions, and thus a 
member of Act=Act1×…×Actn. Given a set of discrete state variables Si (whose values 
depend on the state of specific query sessions), the joined state of the system at a 
specific time point t is defined to be a member of S=S1×…×Sm. A state transition 
function T:S×Act×S → [0,1] gives the transition probability p(St+1|St,Actt) that the 
system will reach state St+1 when the joint action Act is performed at the time point t, 
when the system is at state S. A reward function ri:S×Act → |R provides each agent Ai 
with an individual reward, depending on the joint action Act performed in state S.  

Given that the model assumes the Markov property and that the reward and 
transition probabilities are independent of the time t, the successor of a state S (or s) 
given an action Act (resp. act), is denoted by S’ (resp. s’).  

A policy Π:S→Act specifies a joint action Act for each joint state S.  
The objective of tuning the information sharing and searching task is to find an 

optimal policy Π∗ that maximizes the expected discounted future return V∗(s) =maxΠ 
E[Σt γt R(St, Π(St))|Π, S0 = S] for each state S. The expectation operator E[.] averages 
over stochastic transitions, R  is the global reward and γ∈[0,1) is the discount factor.  

3 The Proposed Approach 

Briefly, the overall process is as follows: Each agent gets payoff updates from its CG-
neighbors, it propagates updated local payoffs to its inverse CG-neighbors, uses 
computed payoffs to estimate routing action values, and processes/ routes own 
queries. The estimation of the routing action values happens through collaborative 
reinforcement learning, while the estimation of payoffs – which are exploited by the 
learning method- via the max-plus algorithm.  

The objective of collaborative reinforcement learning is to support agents to select 
a joint policy that provides them the highest possible reward. Agents have no prior 
knowledge about the effect of their actions, but this information has to be learned 
based on the received rewards. We use the collaborative multiagent Markov decision 
process (collaborative multiagent MDP) model [4], also used in [5]. In this model 
each agent selects an individual action, given a particular state. Based on the resulting 
joint action the system transitions to a new state and the agents receive an individual 
reward. The global reward is the sum of all individual rewards. No agent can observe 
the global reward. In a collaborative MDP, the goal of the agents is to optimize the 
global reward. The individually received rewards allow for solution techniques that 
take advantage of the problem structure revealed by coordination graphs.  

Recall that the objective is to find an optimal policy Π∗ that maximizes the 
expected discounted future return. Q-functions (action-value functions) represent the 
expected future discount reward for a state S when selecting an action Act and 
behaving optimally from then on. To approximate the global Q-function we use the 
agent-based update of the edge-based decomposition Sparse Cooperative Q-learning 
method proposed in [5].  

Therefore, given a coordination graph of agents, each edge (Ai,c,ttl,Aj,c,ttl’) in ECG 
corresponds to a local Q-function Qij. The global Q-function is the sum of all local 
functions 
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Q(S, Act) = Qij (Sij ,acti,c,ttl,act j,c,ttl ')

(Ai ,c,ttl ,A j ,c,ttl ' )

∑
                               (1)

 

where Sij⊆Si∪Sj is the subset of state variables that are relevant to the dependency 
between agents Ai and Aj with respect to c. The local Q-function Qi of agent Ai is 
defined as the summation of half the value of all Q-functions Qij, where 
Aj,c,ttl’∈NCG(Ai,c,ttl):  

                         
Qi(Si,acti,c,ttl ) = Qij (Sij ,acti,c,ttl,act j,c,ttl ')

(Ai ,c,ttl ,A j ,c,ttl ' )

∑
                     (2)

 

The agent update (edge decomposition) method computes the temporal difference 
error per agent and divides this value over the edges. The Q-function of an edge 
incorporates the information from all edges of each of the involved agents:

   Qij (Sij ,act i,c,ttl ,act j ,c,ttl ' ) = Qij (Sij ,act i,c,ttl ,act j ,c,ttl ' ) +

  

       
a

rk (S,Act) + γQk (s'k ,act *k,c,t ) − Qk (sk,actk,c,t )

NCG (Ak,c,t )Ak,c,t ∈{Ai ,c,ttl ,A j ,c,ttl ' }

∑
            (3)

 

The discount factor γ is set to 0.3 and the learning rate α to 0.2. act*
k is the 

maximizing action of agent Ak in the state s’k. The reward rk(S,Act) for each of the 
agents Ak in an edge is set to be equal to the i-Value (iValue(Ak,c)) of the searched 
information category c for the agent Ak. The value of the maximizing action of agent 
Ak for a search session at state s’k=(path,ttl,Ak) is estimated as follows: 
Qk(s’k,act*k,c,ttl)=max(gk(actk,c,ttl)), where gk depends on the payoffs propagated via the 
max-plus algorithm (explained in the next paragraphs). Qk(sk,actk) is computed as 
specified by equation (2).  

Thus, each local Q-function Qij is updated with a proportional part of the received 
reward of the two agents it is related to and with the contribution of this edge to the 
maximizing joint action actk,c,ttl∗ in the state sk. As already said, this is approximated 
by the max-plus algorithm. Using this combination of methods, as it is shown in [8], 
the edge-based decomposition scales linearly in the number of CG-neighbors. The 
update of the action-value for an agent is based on the current Q-value and the local 
contribution of this agent to the global return.  

In order to compute the optimal joint action that maximizes the sum of agents’ 
local payoffs (i.e. the global payoff), we use message passing algorithms [6], and 
particularly the max-plus algorithm. According to this algorithm, given a query 
<id,c,TTL> a session of which is at state <path,ttl, Ai>, each agent sends a message μij 
to each of its CG-neighbors. Allowing only payoff functions defined over at most two 
agents in CG the computation of payoffs is as follows: 

              (4) 

The sums concern the local payoffs of all CG-neighbors of Ai,c,ttl’, except those related 

to Aj. Given that , fi specifies the payoff 

contribution of Ai,c,ttl. Formally, fi(acti,c,ttl)= iValue(Ai,c)-Delay(Ai). 
 

 

               μij (act j ,c,ttl ) = max
acti ,c,ttl '

Fij (acti,c,ttl ' ,act j,c,ttl ) +
t=1

ttl '

μki(acti,c,t )
Ak NCG (Ai ) {A j }

 
 
 

  

 
 
 

  
+ cij

                                                           Fij (acti,act j ) = fi(acti) + f i
j (acti,act j )
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Also, fi

j is the payoff contribution of the pair of neighbors Ai,c,ttl and Aj,c,ttl’, given 
their actions acti,c,ttl, actj,c,ttl’. Formally, 

                     
f i

j (acti,c,ttl,act j,c,ttl ' ) =
−Cost(Ai, A j ) if acti,c,ttl routes to A j

−COST otherwise

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

 

where COST is a very large number2. It must be pointed out that these functions 
specifying payoff contributions are rather simple and independent of the ttl parameter. 
Future work concerns elaborating them further by taking into account further 
attributes of the problem and of the setting. 

Given a query <id,c,TTL> a session of which is at state <path,ttl, Ai>, the agent Ai 
may at any time step compute   

gi(acti,c,ttl ) = f i(acti,c,ttl ) + μki(acti,c,ttl)
Ak ∈N(Ai )

∑
                                  

  (5)
 

which equals the contribution to the global payoff function achieved via Ai’s subtrees. 
Thus, each agent can form a decision by approximating its optimal choice regarding c 
and ttl: 

acti,c,ttl
* = argmax

acti ,c,ttl

gi(acti,c,ttl )                   (6) 

Although the max-plus algorithm converges to fixed message values, Q-learning does 
not converges to the optimal Q* values for multiple, independent learners, since the 
decisions of one agent affect in a dynamic way the actions of the others [5].  

Overall, the task is as follows: Given an agent Ai in G, and a query <id,c,TTL> 
whose session is at state <path,ttl, Ai>, Ai routes the query to a percentage of its G-
neighbors (let that be AP – AcquaintancesPercentage ). Routing decisions are formed 
by exploiting routing action values estimated by means of equation (3), or, initially, 
purely randomly: Initially, agents have no estimation about the information provision 
abilities and costs associated to any of their neighbors. Also, even in the case that an 
agent has an estimation of routing actions’ values, it explores further possibilities by 
propagating the queries to randomly chosen G-neighbors, as well. When the query 
reaches an agent Ak that possesses an item in category c, then this agent sends the 
answer directly to the originator of the query. Given that the search session for the 
corresponding query is at state <path’,ttl’, Ak>, Ak calculates and propagates its payoff 
to the inverse CG-neighbors of Ak,c,ttl’. Then, payoff propagation due to this update 
proceeds concurrently to the routing of other queries and, of course, to the estimation 
of agents’ routing action values. Payoffs are getting propagated until they converge to 
fixed values: This is always the case, given that the constructed CGs are acyclic.  

4 Experimental Results 

To validate the proposed approach we have built a prototype that simulates 
information sharing in networks of agents. To test our approach we have run several 
experiments with random and small-word networks. Due to space reasons, we present 
results for random networks only. Networks comprise 50 agents (|N|=50). Results are 

                                                           
2  The rationale behind this, is that, when Ai considers selecting a routing action to Aj, then the 

payoffs of the other neighbors become irrelevant. 
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representative for cases with larger networks of agents. The average number of 
acquaintances per agent in our experiments is 13. Each experiment ran 5 times for 40 
rounds at each round. At each round a constant number of 330 queries are being 
generated. Each query is randomly assigned to an originator agent and is set to 
request one information item of a randomly chosen category. The TTL for every query 
is set to be equal to 7. In such a setting, the demand for information items is high, 
given agents’ information provision abilities and the TTL of queries. To end a round, 
all query sessions must have been ended, and all payoff messages must have been 
converged to fixed values. Information used in the experiments is synthetic and is 
being classified in 15 distinct categories: Agents’ expertise and information values for 
each of the categories is determined randomly. The percentage of acquaintances (AP) 
to which a query can be propagated is set to 1,10 or 20, so as to show the efficacy of 
the method, even if agents perform restricted exploration. To demonstrate the 
advantages of our method we provide results for different configurations: (a) Agents 
propagate queries according to the best routing action estimated using only the max-
plus algorithm (equation (6)). This configuration is indicated by “MS”; (b) Agents 
propagate their payoff estimations only to the inverse-CG neighbors that show high 
interested to each corresponding category of information c (indicated by “P”). The 
estimation of agents’ interests is done as proposed in [8,9]. (c) We also provide results 
from a baseline method where agents select their routing actions randomly (indicated 
by “R”). The experimental settings are denoted by X-Y-AP-W, where X denotes the 
type of network, Y the number of agents, AP the percentage of acquaintances to 
which queries are propagated, and W is either “MS”, “R”, or unspecified for the 
“standard” cooperative Q-learning setting. For instance, Rand-50-10-MS denotes a 
setting with a random network of 50 agents where each query is being propagated to 
at most 10% of an agent’s acquaintances (AP=10), and agents decide on their routing 
actions using equation (6). Results computed in each experiment show the total 
number of query-propagation messages (q-messages), the total number of messages 
for the propagating payoffs (p-messages), the benefit of the system, i.e. the percentage 
of served queries, and the message gain, i.e. the ratio of benefit to the total number of 
messages. Experimental results are depicted in Figure 1.  

              

   

     p-messages                      q-messages 

 

     benefit                         gain  

Fig. 1. Results for X=Rand. The horizontal axis shows the round number. 
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Results lead us to the following conclusions: (a) In any configuration of the 
method, the number of p-messages in the network is drastically reduced to 0. 
Actually, random routing achieves the greater reduction of p-messages in the first 5 
rounds. As AP increases, in all settings, the number of p-messages decreases more 
quickly. In the “MS” configuration, the number of p-messages reaches a plateau far 
above zero. On the contrary, in the “P” settings, where agents exploit profiles of 
acquaintances, the number of p-messages is very small and they reach zero very fast. 
(b) The number of q-messages is also gradually reduced: Greater AP results to a 
greater number of messages. Also, the “R” and “P” configurations do not manage to 
decrease the number of q-messages (these are constantly very large - not shown in the 
diagram). This makes us concern about “when and how profiles should be used?”. (c) 
Things are different for the benefit achieved: Random routing proves to be 
competitive, while routing taking into account agents’ profiles is very effective even 
from the first rounds: It achieves nearly 100% benefit when messages are propagated 
to 20% of agents’ acquaintances. However, when agents use the cooperative Q-
learning method proposed they increase the benefit considerably: Increasing AP 
results to slightly larger benefit. (d) Concerning gain, in all settings, it increases as AP 
reduces: Configurations exploiting 1% of acquaintances are more effective given that 
they achieve high benefit, with a small number of messages.  

5 Concluding Remarks 

Aiming to tuning the information searching task in arbitrary networks of agents, we 
compute an approximation of the global routing policy-value function through 
collaborative reinforcement learning. Specifically we use the agent-based update of 
the edge-based decomposition Sparse Cooperative Q-learning method proposed in 
[5]. The proposed method exploits dependencies between agents’ actions and thus, 
can result to very effective tuning, even to non-hierarchical (arbitrarily organized) 
systems. This is demonstrated by the results in a number of experimental settings 
discussed: The method is very effective even if we restrict exploration or payoff 
propagation. Future work aims to study optimality in various settings, studying deeply 
the exploitation of profiles.   
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