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Abstract. The presented work studies textual summaries, aiming to detect the
qualities of human multi-document summaries, in contrast to automatically ex-
tracted ones. The measured features are based on a generic statistical regularity
measure, named Symbol Sequence Statistical Regularity (SSSR). The measure is
calculated over both character and word n-grams of various ranks, given a set of
human and automatically extracted multi-document summaries from two differ-
ent corpora. The results of the experiments indicate that the proposed measure
provides enough distinctive power to discriminate between the human and non-
human summaries. The results hint on the qualities a human summary holds,
increasing intuition related to how a good summary should be generated.

1 Introduction

In the domain of natural language processing numerous attempts have been made to
identify what is the set of qualities that renders a text understandable and fluent. This
problem has been apparent in machine translation (MT), natural language generation
(NLG) and automatic summarization. In addition, linguists and tutors have been grading
various degrees of fluency of given texts, usually judging L2 authors (authors judged on
their second, non-native, language). Within this study we focus on a notion of regular-
ity, apparently a concept related to grammaticality and fluency more than other textual
features.

Grammaticality is the quality of conforming to a given grammar. Fluency, on the
other hand, is referred to mostly as a measure of text production or reading rate – i.e.
fluent writers write more quickly than less fluent ones [3] and fluent readers read faster
than non-fluent ones. However, the notion of fluency has also been used to describe
well-formed, easily understood text [17].

In existing bibliography, there are methods that use grammaticality as a measure
of acceptability [1]. Similarly, grammaticality has been considered to be a measure of
performance for machine translation systems [9] and summarization systems [6]. The
quantification of grammaticallity is a non-trivial task, which has led various researchers
towards methodologies concerning the calculation of a grammaticality measure. Most
approaches stand upon either parsers [17] or constraint satisfaction models [13].
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In summary texts, the grammar considered for grammaticality is that of the used lan-
guage (e.g. English). In our approach, we do not use a given grammar: we use a measure
we term Symbol Sequence Statistical Regularity (SSSR). This measure indicates, in a
graded fashion, whether sequences of symbols (e.g. words, characters) have been found
to be neighbours in a manner similar to the sequences in a set of given, training texts.
With the use of SSSR, we try to determine statistically the differences of human and
automatic summary texts, to gain intuition required to create better summarization sys-
tems.

The rest of the paper is structured as follows. In section 2 we provide background
information and a brief review of related works. Then, we present the Symbol Sequence
Statistical Regularity definition, along with the proposed methodology for its usage, in
section 3. Experiments follow, in section 4, providing the validation of our anaysis. We
close the paper with the conclusions and the lessons learned from the study, in section 5.

2 Related Work

In the research quest for fluency and grammaticality evaluation, the works of various
linguists and philosophers concerning grammars and acceptability have provided both
the foundations and a constant source of research. The work of N. Chomsky for many
years has delved upon the notion of grammaticality [4,5]. Both in statistical as well as
non-statistical aspects of grammaticality, it has been considered that there can be either
a binary decision upon whether a text segment is grammatical, or a graded decision.

Research considering how grammaticality can be graded in a non-binary way has
treated grammar as a set of constraints that are either realized or not within a text. There
have been distinctions between soft and hard constraints, related to how important a
constraint is to the acceptability of a clause [13,22]. Much of the existing work has been
based on Optimality Theory (see [21]), which declares that output language is based on
a procedure that uses a “candidate analysis” generation function, called GEN and a
harmonic evaluation function, called H-eval, which evaluates candidates according to
a harmony criterion. The GEN function is part of a Universal Grammar that generates
candidate alternatives of analysis for the input, while and the H-eval function is created
based on well-formedness rules of a given language. The methodology using GEN and
H-eval describes a loop between the two components, until no analysis generated by
GEN can give better harmonical results.

In [1], we find an approach based on Property Grammars, which is also a constraint
based syntactic formalism. Using Property Grammars tha authors, in the process of
analysis, detect the number of properties related to a constituent. Then, these properties
are evaluated, and a quantization is performed by measuring the number of violations,
non-violations and the number of all the properties evaluated. Highly grammatical text
chunks will have a low number of violations for a given set of evaluated properties.
The method also applies constraint weighting, which has been used in other works as
well [22]. The output is a grammaticality index that is shown to correlate to human
acceptability evaluations.

From the domain of machine translation, we find the X-Score evaluation process
[9], which computes a “target language”, consisting of morphology and relationships
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extracted from a model corpus called “fluency corpus”. Then a tagger is used to apply
morhological and relation tags to terms of the evaluated text. The assumption used by
the authors of X-Score is that the fluency score of a text should be linearly dependent on
the frequencies of tags. A prediction function is estimated based on the fluency corpus
and then the function is applied to the frequencies of tags of any evaluated text, return-
ing the estimated fluency index of the evaluated text. In the work described in [17] the
prediction of acceptability is viewed as a machine learning problem, where the output of
a set of parsers is used as input to a learner, trying to discern human from machine gen-
erated sentences. Then, the distance of evaluated texts from the support vectors output
by the SVM learner determine a metric that correlates to human judgements of fluency.

Here, we should note that a number of other methods of evaluation have been used
in the domain of summarization and machine translation, like the ROUGE/BE family
of evaluators [14,10] or their “Machine Translation”-related predecessor BLEU [19].
These use word n-grams or sets of terms (e.g. head-relation pairs) extracted from the
evaluated text and compare them to similarly extracted n-grams or sets of terms from a
model corpus. Then, recall and precision related measures can be used to evaluate the
given text. These methods however, together with they Pyramid method [20] and the
AutoSummENG family of methods [8,7], are mostly meant to evaluate content and not
grammaticality.

Studies that analyse human summarization in order to understand the process have
been conducted in the past, revealing the abstractive nature of human summarization.
In [11], the section on Corpus Analysis indicates that a number of sentences in hu-
man summary texts had no equivalent in the source documents. Furthermore, most of
the sentences that indeed had an equivalent in the original texts were transformed and
combined in various ways to form the summary. Various aspects of the summarization
process have been examined in [18] as well, in terms of the processes that define the
content and the methodology of rewriting sentences. A series of studies, also apparent
in [6], show that automatic systems lack in various domains of text quality, even though
they do well in content selection.

The state of the art contains various kinds of evaluators concerning grammatical-
ity and fluency, which are both indicators of acceptability and regularity of text. Our
method is related to various of these evaluators, because it: uses a model corpus; de-
rives patterns from the model corpus; uses machine learning methods to discriminate
between human and machine-generated texts. The differentiating factors of the pre-
sented method, on the other hand, are the following. First, we do not extract a grammar
from a text; we determine regularity, given an input corpus. This regularity may cor-
relate to various qualities that render a text normal and not only grammar. Second, we
do not apply preprocessing of any kind to the input text. Only word splitting is used,
if we want to use word n-grams. Third, our method requires no underlying language
knowledge. This way it functions independently of language. The model of regularity
is extracted from a given corpus. Fourth, we use sub-word structure information, by the
use of character n-grams. Last, the method supports variable granularity, allowing to
detect different types of regularity, from word spelling to syntax.
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At this point, we want to focus on the fact that the presented study used the analysis
methodology as a means to derive important lessons. Therefore, we have not studied in
full the application spectrum of the analysis method itself.

3 Symbol Sequence Statistical Regularity

In order to analyse the differences between human summary texts and automatically
generated ones, we have created a representation of text that includes sequence infor-
mation. We wanted our representation to be parametric in terms of desired granularity
and also allow comparison between its instances. We also wanted to add the ability to
cope with fuzziness and ambiguity of expression.

The produced representation, which we call Statistical Symbol Sequence Represen-
tation (SSS-Rep), is a set of triples, including a pair and a corresponding distribution
for each pair. The first part F of each pair is a sequence of symbols; each symbol can
in fact be either a single letter, a word or a whole sentence. The second part S is a single
symbol1. The distribution D for a given pair describes the number of co-occurences of
F and S in the text as a function of distance between them, up to a maximum distance
dmax. This distance is measured as the (integer) number of symbols from F to S in the
text, so if we talk about words the distance is measured in words, if we talk about char-
acters, in characters. From now on we denote such a representation as a set of triplets
in the form: F → S(D), where D ≡ (distance1 ⇒ numberOfOccurences1distance2 ⇒
numberOfOccurences2...) in a sparse distribution representation. D(x) identifies the
number of occurences for a given distance x. We cosider D to be the powerset of
sparse distribution representations. So, if distance1 is 1 and distance2 is 4 and their
numberOfOccurences are 2, 5 correspondingly, then we have found 2 times S to be in a
distance of 1 from F in the text and 5 times in a distance of 4.

The SSS-Rep has a set of parameters, indicative of its granularity and fuzziness: the
r-gram rank r of F, the maximum distance dmax of co-occurence as well as the type of
symbol (e.g. character, word, sentence). Thus, we will use the form SSS-Rep(r, dmax,
symbolType) to fully describe an SSS-Rep and we will call every triplet that can be
derived from a given SSS-Rep an instance of SSS-Rep.

Example 1. The sentence:
“A big big test.”
is represented as SSS-Rep(1,1,character) by:
t → e(1 ⇒ 1.0); → b(1 ⇒ 2.0);A → (1 ⇒ 1.0); → t(1 ⇒ 1.0); b → i(1 ⇒
2.0); t → .(1 ⇒ 1.0); e → s(1 ⇒ 1.0); g → (1 ⇒ 2.0); s → t(1 ⇒ 1.0); i → g(1 ⇒
2.0)
while in SSS-Rep(2,2,word) by:
big, big → test(1 ⇒ 1.0); a, big → test(2 ⇒ 1.0); a, big → big(1 ⇒ 1.0)

We say that the first set of triplets is an instance of SSS-Rep(1,1,character), while the
second an instance of SSS-Rep(2,2,word).

We note that, essentialy, SSS-Rep(1,1,word) can directly map to a bigram language
model [15]. Thus, some SSS-Rep configurations are n-gram language models. How-
ever, in general SSS-Rep configurations are not n-gram models. The study of the exact

1 Using a single symbol in the second part allows efficient calculation of the SSS-Rep.
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relation between SSS-Rep and n-gram models is, however, outside the scope of this
work.

Having defined SSS-Rep, we define a measure of similarity between two instances
of an SSS-Rep, given the fact that they share the same parameters. First we prepare our
functional tools:
If T1, T2 are two instances of SSS-Rep(r, dmax, symbolType), we define the membership
operator:

SSS-Rep(r, dmax, symbolType) � T1 ⇐⇒
T1 � SSS-Rep(r, dmax, symbolType) ⇐⇒
T1is an instance of SSS-Rep(r, dmax, symbolType) ⇐⇒
T1 = {(x, y, z) : isA(y, symbolType),

isNGramOf(x, symbolType), rank(x) = r,

{z} ∈ D}

where rank(x) gives the n-gram rank of x, and isA(x, symbolType) returns true if x
is a symbol of type symbolType and isNGramOf(y, symbolType) returns true if y is
a sequence of symbols y = {y1, y2, ..., yn}, n ∈ N

∗ : ∀1 ≤ i ≤ n, i ∈ N, isA(yi,
symbolT ype).

We also define a membership function connecting triplets to an SSS-Rep instance T :
A ≡ (F → S(D)) ∈ T ⇐⇒ there exists an identical triplet A in the set of triples
representing T .

We define a similarity measure sim between distributions D1,D2, even though ex-
isting similarity measures like KL-divergence or chi-square can be used as well. We
used a simple sum of absolute differences, because it cost less processing time to cal-
culate. In fact the similarity between two distributions is the sum of the absolute dif-
ferences for all the non-zero elements for either distribution. If X are the values of
{x : D1(x) > 0 or D2(x) > 0}, then: sim(D1,D2) =

∑
i∈X(abs(D1(i) − D2(i))),

where abs is the absolute value function.
On the same basis, the similarity of two triplets A,A′, simT(A,A′) equals to the

similarity of their distributions D,D′, sim(D,D′) if the two first elements of the triples
are identical, else we define simT(A,A′) = 0. For T1, T2,
T1 � SSS-Rep(r, dmax, symbolType),
T2 � SSS-Rep(r, dmax, symbolType) we define the regularity function of T1 given T2

and its corresponding operator “∼ ”:

Definition 1. T1 ∼ T2 ≡
regularity(T 1|T 2) =

∑
A∈T1,A′∈T2

sim(A,A′)
|T1| , where |T1| is the number of triplets in

T1. We use the |T1| in the denominator because T1 is the triplet judged and T2 the
a-priori evidence: we need the regularity function to be anti-symmetrical.

In order to define the SSS-Rep of a corpus C = T1, T2, ..., Tn, n ∈ N
∗, we can simply

concatenate the corpus texts in a single super-text. Given this definition, we can also
define the comparison between a corpus and a text, by comparing the corresponding
super-document and the document SSS-Reps. This is what we call SSSR.
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4 Experiments

The data on which our experiments were conducted were the summary and evaluation
corpus of DUC 2006. The corpus consists of summaries for 50 different topics, as well
as the corresponding 25 input documents per topic from which the summaries were
generated. Each topic had a number of automatically extracted summaries, one for each
participating system, and 4 human created summaries. The human summaries were
differentiated by means of an identifier, as were the baseline system summaries, which
originated from a baseline system created by NIST, which simply took the first 250
words of the most recent document for each topic. All summaries were truncated to
250 words before being evaluated. To verify some of our experiments using a second
corpus, we have used the corpus of DUC 2007 as well. The corpus, similarly to the one
of DUC 2006, consists of summaries for 45 different topics. All topics had 4 human
summaries each, as well as 28 machine generated summaries. In the corpora the human
summaries appeared both as models and peers (i.e., twice each). In this study we have
kept both duplicates of human summaries as “human” instances, so the count of human
summaries will appear to be double the expected.

In order to use baseline-quality texts, we created a single automatic summary for
each topic in the DUC2006 corpus. The summary was created by randomly adding
words from the 25 input documents in a way that the statistics of the words (frequency)
would tend to be the same as the input documents. The length of the summaries is about
250 words (length chosen from a Poisson distribution averaging to 250).

To determine whether the presented methodology extracts features that discern be-
tween human and automatic summaries, we have conducted the following process over
two different corpora. For a given topic, the set of input documents were analysed to
determine the

{
SSS-Rep(i, j, character), 1 ≤ i ≤ 8, j = i

}
set of representations for

each topic. We also performed word analysis to get the set of representations
{

SSS-
Rep(k, l, word), where 1 ≤ k ≤ 3, l = k

}
. Both character and word SSS-Rep created

the representation CSSS-Rep of the analyzed topic. For each summary document, either
human or automatically-generated, we extracted the same set of representations as those
of the corresponding topic. We compared each summary text representation TSSS-Rep to
the corresponding topic representation CSSS-Rep, creating a feature vector, the values of
which were the results of TSSS-Rep ∼ CSSS-Rep for the SSS-Rep configurations. This gave
a 11-dimensional vector, which we matched to a label L ∈ {human, peer}. The “peer”
label was assigned to automatic summarizer documents plus our baseline documents.
We used a simple Naive Bayes and a kernel-estimating Naive Bayes classifier [12] to
determine whether the vectors were enough to classify human and non-human (peer)
texts effectively. In both cases 10-fold stratified cross-validation was performed to de-
termine the effectiveness of the method (see the WEKA toolkit [23]). Then, we used an
SVM classifier as well, to validate the results. We calculated each feature’s Information
Gain and performed Principal Component Analysis to determine important features.

4.1 Classification between Human and Machine-Generated Summaries

The naive Bayes classification using the full feature vector managed to provide an F-
measure that exeeds 90%, for both classes. It is impressive that we need not apply more
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complex classifiers (like SVM or neural networks); this identifies the features used as
appropriate. In Table 1 we see the breakdown of correctly classified and misclassified
instances. We see that the count of automatic summary texts is much higher than the
one of human summaries. This would be expected to lower the effectiveness of the
simple naive Bayes; but that has not happened. Once more, the features are shown to
be appropriate. We apply a more complex classifier to see if it is easy to maximize the
attained F-measure. Using Multinomial Bayes [16], as well as an Radial Basis Function
kernel SVM classifier (C-SVM) with a high cost parameter (LibSVM implementation
[2]) we got the results shown in Table 1.

Table 1. Confusion Matrix — DUC 2006: (left to right) Naive Bayes (NB), Multinomial NB,
C-SVM

Classified As
Peer Human Actual Class
1740 60 Peer

13 387 Human

Classified As
Peer Human Actual Class
1780 20 Peer

4 396 Human

Classified As
Peer Human Actual Class
1797 3 Peer

1 399 Human

At this point we wanted to check whether the SVM model we produced was only
overfitting the DUC 2006 corpus data. Thus, we evaluated the model on the DUC 2007
corpus data. Impressively, the results were quite similar, as can be seen in Table 2,
amounting to an F-measure of over 97% for both classes. Then, we evaluated the model
of DUC 2007 on the DUC 2006 data. The results of this experiment, which are de-
scribed in Table 2, show that we had an increased number of false negatives for the
Human class. This is probably the effect of not including baseline texts in the experi-
ments conducted on the corpus of DUC 2007, which reduced available information on
negatives. In any case, the application of the extraction and learning process by itself
yields comparable results for both corpora.

Table 2. Confusion Matrix — C-SVM model: DUC2006 on DUC2007 (left); DUC2007 on
DUC2006 (right)

Classified As
Peer Human Actual Class
1439 1 Peer

18 342 Human

Classified As
Peer Human Actual Class
1797 3 Peer
335 65 Human

The experimental results, therefore, illustrated that the use of SSS-Rep as the means
to represent the corpus and the texts, along with the use of SSSR for the extraction
of regularity, provide good enough features to tell human and automatically generated
summaries apart.

4.2 Feature Importance

At this point, we wanted to see, given the success of the classification process, what the
key features in the classification are. We used two methods to decide upon the answer.
First, we ranked the features according to their Information Gain (see [15, p. 583] for
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linguistic uses of the measure), concerning the human-peer classification. Second, we
performed Principal Component Analysis [24] to extract complex features that hold the
most useful pieces of information.

The information gain calculation gave the ranking of Table 3. In the table, attributes
are named according to the SSS-Rep used, where the first part (“char” or “word”) indi-
cates what kind of symbol was used and the second part what was r = dmax paramteter
value was. For example, Char2 indicates character symbols with r = dmax = 2. The
Table presents both ranking for DUC 2006 and 2007 corpus on the left and right part
correspondingly.

Table 3. Feature Importance Based on Information Gain (left), PCA analysis (right)

Rank IG 2006 SSS-Rep IG 2007 SSS-Rep
1 0.6528 Char8 0.6769 Char7
2 0.6527 Char7 0.67525 Char8
3 0.6463 Char6 0.67394 Char6
4 0.6161 Char5 0.61962 Char5
5 0.3703 Char4 0.35862 Char4
6 0.0545 Char3 0.06614 Char3
7 0.0256 Word3 0.01098 Char1
8 0.0196 Char1 0.0078 Char2
9 0.0133 Word1 0 Word2

10 0 Word2 0 Word3
11 0 Char2 0 Word1

Corpus Eigenvalue Feature Formula
DUC 2006 5.62218 0.414Char4+0.409Char5

+0.389Char6
DUC 2007 5.70926 -0.411Char4-0.397Char5

-0.372Char6

The application of PCA on both the corpora of DUC 2006 and DUC 2007 brought a
pleasant surprise: the most important Principal Components (according to their eigen-
value) extracted from both corpora were very similar. Both the absolute values of
weights of the original features in the complex features, as well as the eigenvalues
of the major principal components themselves were similar (see Table 3), giving high
importance to non-word units (character n-grams). This indicates emergent important
features, only partially dependent on the corpus.

It seems that the low-ranked character n-grams simply reproduce the spelling con-
straints of a language and offer no useful information. The most important features ap-
peared to be high-ranked character n-grams, because those overlap more than one word.
These features are the ones detecting word collocations and other similar phenomena.
Using only Char7 and Char8 features with Multinomial Naive Bayes we reached a per-
formance of 99% accuracy (only 16 misclassified peer texts and 8 misclassified human,
on a whole of 2176 texts). In Figure 1, the light colored (yellow) areas indicate human
instances and the dark colored (blue) peer instances. We see that higher rank charac-
ter n-grams discriminate between classes: humans have lower SSSR in high ranks than
automatic summaries, but higher SSSR than random texts.

What is easily noted from the above is that importance is focused in sub-word (char-
acter) features. However, it is not the spelling that makes the difference, but the joining
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Fig. 1. Distribution of (left to right) character uni-grams, 4-grams, 8-grams SSSR for DUC 2006

of words. We interprete the results as an indication that regularity is not a measure of
quality: it is mostly a measure of whether a text is result of an abstraction or refor-
mulation process. That is why people have lower SSSR performance than automatic
summarization systems, but higher than random texts.

5 Conclusions and Future Work

From the study presented we have inferred a number of facts, concerning mostly the
summarization process. First, many existing automatic summarization systems, which
are based mostly on extractive techniques, appear to share statistical features. There is
such a feature that can tell human summaries apart from automatically generated ones.
This is called Symbol Sequence Statistical Regularity, SSSR. Second, human summaries
tend to have lower SSSR values than automatically generated summaries. This may be
directly connected to the abstractive nature of multi-document summarization. On the
other hand, human summaries tend to have higher SSSR values than summaries gener-
ated as random text. It would be better, however, if more research was conducted as to
what values of SSSR would text generated by language models like HMM have. Would
SSSR remain useful then? Last, the principal components, based on SSSR, that discrim-
inate human from automatically-generated summaries for a given language seem to be
rather specific. This indicates that humans do follow statistically tracable patterns of
text generation if we get to the character level.

In an effort to evaluate automatic texts, with respect to human perception of fluency
and grammaticality, the presented SSSR measure adds one more scientific tool, which
holds such abilities like language-neutrality and objectivity. It would be very important
to determine other, perhaps similar measures that will be able to detect other aspects of
human texts. This includes existing n-gram-based methods which can be leveraged to
increase our intuition of the complex process of summarization. Such intuition will in
turn, hopefully, give birth to better automatic summarization systems. In our research,
we have begun to utilize SSSR in the process of sentence reformulation for summariza-
tion and expect results soon.

The corpora of DUC 2006, 2007 were kindly provided by NIST and have been used
according to the ACQUAINT directions. The whole range of experiments for this paper,
as well as the editing process and statistical analysis were conducted on Open Source
software. The JINSECT toolbox used in the paper can be found at
http://sf.net/projects/jinsect.

http://sf.net/projects/jinsect
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