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Abstract. We examine sorting on the assumption we do not know in advance 
which way to sort. We use simple local comparison and swap operators and 
demonstrate that their repeated application ends up in sorted sequences. These 
are the basic elements of Emerge-Sort, an approach to self-organizing sorting, 
which we experimentally validate and observe a run-time behavior of O(n2). 

1 Introduction 

Sorting has been one of the first areas of computer science to showcase efficient algo-
rithms to stand the test of time. Our key motivation to examine sorting is to investi-
gate what is the minimum structure of local operators whose repetitive application 
ends up in sorted sequences. We relax the assumption that we know which way to 
sort, yet arrive at a sorted sequence by simple local interactions, which are also able to 
address on-the-fly modifications of the sequence-to-be-sorted. Accordingly, our con-
tribution lies with the development of several such operators and the validation of 
their emergent sorting efficiency independently of any global sorting direction bias. 

A simple example may help to visualize such a context. Consider a database which 
is distributed across several sites, with each site maintaining a sorting that best suits 
its local needs (either largest-first or smallest-first). If there is a need to redistribute 
objects across the sites, according to their order, so as to avoid asking all sites where 
an object might be located, one can either opt for some sort of centralized control over 
who-comes-first or, simply, let each object re-arrange itself in the local neighborhood. 
Additionally, when new objects are inserted dynamically into any of the available 
sites, one can either explicitly direct each one of them to the correct database partition 
or, simply, wait until the object finds its way to a partition. Similar problems have 
been long studied in the distributed computing literature [1][2][3], have attracted the 
attention of the multiagent systems community [4][5] and the consensus reaching 
community [6]. 

Locality is central to the swarm intelligence and game theory areas too. Swarm in-
telligence has gathered significant momentum since many traditional problems (graph 
partitioning and clustering, among others) have been recast in terms of swarm beha-
vior. Swarm intelligence is at the junction of randomized behavior and local opera-
tions and has been demonstrated to solve difficult problems such as task scheduling 
[7]. Now, emergent sorting is a behavior that has been documented in insect societies 
and modeled via swarm intelligence principles [5][8], albeit in an unconventional 
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way; therein, sorting takes place in 2-D and consists of forming concentric circles 
where items of similar size are at roughly the same distance from the centre. 2-D sort-
ing has received relatively scant attention since it is usually seen as a (difficult) case 
of clustering, another classic problem that has been also recently addressed with 
swarm intelligence [9]. It is interesting to note that swarm intelligence, beyond emer-
gent sorting [4], has been also related to autonomic computing research, mainly 
through the observation of autonomic computing principles in biology inspired sys-
tems and the transfer of relevant concepts to problems in distributed computing [10]. 

Game theory, on another front, directs huge research effort at studying various 
computational games from the point of view of reaching a Nash equilibrium; therein, 
one usually favors algorithms that make little use of global knowledge and where 
agents act competitively yet manage to converge to a state that satisfies them all [11]. 
In such settings, one asks what expense such anarchy incurs when seen from an opti-
mization point of view; in other words, if one could centrally design what each agent 
will do, it is interesting to know how much effort one would save. The beauty of loca-
lized behavior in that setting usually comes from the appreciation of its robustness 
and graceful behavior in adversarial contexts as well. The similarity to our problems 
is quite straightforward: we are, what is the cost of not knowing which way we need 
to sort and how can we induce our sequences to self-sort. 

Seen from a more conventional computer science perspective, swarm intelligence 
draws on several aspects of distributed computing [1][12][13], where, however, the 
underlying algorithm usually assumes a sequence of distinct passes over the data to 
achieve sorting. It is interesting to see that O(n2) seems to be the minimum one has to 
pay for such sorting but we note that our local operators achieve such performance 
without any knowledge of further steps. From that perspective, we view cellular au-
tomata to be also related to our approach [14][15, also taking into account the genetic 
discovery of interesting behaviors for such automata [16][17] and their influence on 
distributed co-ordination in consensus reaching problems [18][19]. 

The rest of this paper is structured in three sections. The next one is the core of the 
paper: we sketch out the basic principles that have lead to Emerge-Sort by showing 
how various modifications in simple local operators influence their capacity to finally 
deliver sorted sequences. Following that, we show a brief experimental validation of 
these fundamental concepts and, finally, we conclude the paper by drawing key con-
necting lines from our research to swarm intelligence and by setting forth the key 
future research viewpoint. 

2 Developing Emerge-Sort 

There are six possible ways to permute a triple (a,b,c) of distinct numbers (Fig. 1); 
additionally, un-sorted triples require a single swap between two elements to turn into 
sorted ones. 

It turns out that this simple operator cannot scale to arbitrarily selected triples of 
any unordered sequence (it is not difficult to devise a counter-example demonstrating 
eternal oscillation between two sequences), so the next best attempt is to minimally 
extend this operator.  
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Fig. 1. Possible permutations and swaps to sort any three numbers 

Interestingly, the extension is quite simple: sort the triple in the direction indicated 
by a majority vote among all triple members’ direction preferences. Such direction 
preference (bias) can be initialized at random for each member. In effect, the new 
local sorting operator (which, we stress, is confined to the triple’s limits): 

- First, establishes a preference for a sorting direction, 
- Then, enforces that direction by locally sorting the triple, 
- Finally, modifies the sorting direction bias of the minority vote items. 

So, we have substituted the “to make as few moves as possible” approach with a still 
very simple one, namely “to make as few direction bias changes as possible” (which, 
of course, means that the arrows shown in Fig. 1, about how permutations are turned 
into sorted triples, are no longer valid). The new approach creates overlapping triples 
that compete for setting the sorting direction of the sequence. But, this suffices for the 
sequence to be eventually sorted. 

2.1 A Proof of Concept 

As a convention, let us use A to denote an ascending sorting bias (for left-to-right), 
and D to denote a descending sorting bias (again, for left-to-right). Let us also assume 
that we have a sequence of length n to sort. A triple is uniquely identified by the loca-
tion of its middle element, i, with 1 ≤ i ≤ n and we employ a simple wrapping that 
arranges the sequence in a circle (ring). 

Now, assume that at initialization, all numbers in the sequence have equal proba-
bility of having a sorting bias direction of A or D. Note that the sorting bias in a triple 
only conveys information as to what sorting direction it plans to employ. 

We now show an example of a neck-to-neck competition for establishing the bias; 
it will then be easier to develop a general probabilistic argument. 

Let us assume that a sequence has the following bias distribution: DDDDAAAA. 
Some locations (underlined) belong to triples with competing biases: DDDDAAAA; let 
us examine one such contest point at the centre of triple 5. For this point, triples 4, 5 
and 6 compete to set its bias. Even if all triples act purely parallel, the one to fire last 
gets the final opportunity to modify that location’s bias. If we examine all contest 
points for the particular configuration set out above and enumerate all possibilities of 
alternative triple firing orders, it turns out that, there is a 1/3 probability that there will 
again be four As and four Ds and there is a 2/3 probability that either As or Ds will 
overwhelm the other. 
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However, establishing a majority of one sorting direction bias will, quite probably, 
create more triples of the same bias, increasing the probability that all triples will end 
up with the same bias. Eventually, this sorts the sequence. 

2.2 A Global Sorting Direction Bias Delivers a Sorted Sequence 

When all triples have the same sorting direction bias, any triple that is being picked to 
sort itself will contribute to the overall sorting. 

A simple measure of unsorted-ness of any sequence is the number of alternating 
runs, as defined by the times one has to change the upwards or downwards direction 
when traversing the sequence, end-to-end. For example, the sequence (3, 5, 6, 2) has 2 
alternating runs; a triple can have at most 2 alternating runs. 

Assume that one has achieved a global sorting direction bias of A (of course, no 
triple is aware that its bias is also a global one). Then, any time a triple is locally 
sorted, it either decreases the number of alternating runs of its extended neighborhood 
(and of the whole sequence, as a result) or it leaves that number unchanged. Each 
alternative has a probability of ½. 

Now, consider a sequence of length n, where, in one parallel round, all triples sort 
themselves. Of course, we have no guarantee that the actual number distributions in 
these triples will mean that a particular local sorting will decrease the overall number 
of alternating runs with a probability of ½. However, we can approximate as 1/2n the 
probability that no individual triple sorting will affect the overall sequence’s number 
of alternating runs. Since this number converges very fast down to 0, an incremental 
improvement (decrease) of 1 in the unsorted-ness measure is almost certain to happen. 

Note that, whenever large chunks of the sequence are already sorted, there exist 
fewer points which serve as ends of the alternating runs and the previous argument 
does not hold. But, to compensate for that, we note that the actual numbers of alter-
nating runs is now much smaller itself, compared to when the sequence is shuffled. 
The number of alternating runs can be viewed as a potential function, which, at every 
point, strictly does not increase. 

With a settled sorting direction bias, the maximum distance one number needs to 
travel is n-1, so O(n) parallel steps suffice to sort the sequence. If we allow each triple 
to fire independently of each other and randomly, then it may take O(n2) individual 
triple local sorting operations to deliver the final sorted sequence. 

2.3 Converging to a Global Sorting Direction Bias 

Considering any triple in isolation, just one operation suffices to switch it to a com-
mon bias; any minority item cannot avoid having its flag overturned. 

The next more complex case is to consider a quadruple with evenly distributed 
flags. When examined in triples, it will also have a global direction bias settled fast; 
the first step will change one flag and, then, a single flag cannot survive. 
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Things become more complicated with longer sequences. When examining an 
ADDAA quintuple, oscillations can occur ad nauseam between alternating configura-
tions (for example, if we first examine a triple centered around a D item, then the 
majority of flags features a D, which can change again if we examine a triple centered 
around one of the remaining As). 

The probability of oscillations strictly decreases the longer we examine local 
triples and eventually one ends up in a sequence with a common flag; this happens 
because we have a Markov chain with two equilibrium distributions, all As or all Ds, 
whose stationary distribution (denoted as Mi for a square nxn matrix, with n being the 
length of sequence) converges to a single column of 1’s. This is a probabilistic guar-
antee that all sub-sequences with the same flag will be eventually washed out. 
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Brief experimentation with several variants of the matrix above revealed that they 
converged within 1% of the stationary form in O(n3logn). But, as we shall see in the 
experimental section below, this is an unwarranted pessimistic estimate when com-
pared to the average sorting time for a variety of sequences. 

3 Experimental Validation  

To validate the principle of Emerge-Sort we describe a series of experiments we have 
carried out across a range of input sizes and with several initial distributions of A and 
D biases. 

We review in Table 1 the results for n = 128. Each line corresponds to 100 experi-
ments. The % A column indicates the percentage of elements that have been initia-
lized with an A sorting direction bias. It is reasonable, of course, that when a large 
majority of elements has the same sorting direction bias, there is a high probability 
that the sequence will eventually be sorted according to that bias. The % sorted As-
cending column confirms just that. 

Note that, as earlier argued, it is also reasonable that the faster all sequence  
elements converge to a common sorting direction bias, the faster it will be able to 
eventually sort itself. This is confirmed by the # Rounds column, which reports the 
individual number of triples examined. It is also confirmed by the # Moves columns, 
which shows how many numbers are moved per round on average. Since triples are 
fired at random, rounds are measured in terms of individual triple inspections. 
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Table 1.   Results for n = 128 (100 experiments) 

% A % sorted Ascending # Rounds # Moves 

99 100 4614 51 
95 100 5163 52 
90 99 6099 53 
80 97 7778 58 
70 96 9346 64 
60 68 10697 74 
55 63 10985 76 
50 54 10949 76 

We present in Fig. 2 a clear O(n2) pattern for larger values of n. 

 

Fig. 2. Results for n = 128, 256, 512, 1024, 2048 

4 Conclusions and Future Directions 

We have described the concepts and a brief experimental validation of Emerge-sort, a 
sorting algorithm that does not depend on being told which way a sequence should be 
sorted and yet manages to sort that sequence, usually alongside a dominant preference 
among the sequence numbers, based on randomly applied simple local operators. 

Emerge-sort closely follows the concepts of ant based algorithms, where sequences 
of numbers are societies of individuals who act locally and are unaware of the  
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consequences of their actions on the sequence as a whole. Therein no shared know-
ledge, control or logic exists; individuals are only triggered into action via messaging 
by objects within their reach. Direction bias flags act as pheromones that are laid on 
the ground (this is the stigmergy concept), inviting others to follow a certain direction 
(this is the chemotaxis concept). Although the society has no hierarchies, large num-
bers can be viewed as foraging agents who influence others by helping settle direction 
issues (much like how taller children act when a group of children self-arranges itself 
in a circle according to height in a schoolyard). Furthermore, when a triple finds itself 
ordered it remains idle, being oblivious to a grander common global goal. But this 
delivers the n/logn penalty which this society pays for not having an a priori leader to 
settle the direction issue. 

Research in Emerge-sort started as an experimental effort into investigating the 
dynamics of local operators regarding their ability to generate order. But, in compu-
ting, the trade-off between local operators and co-ordination has been studied in sev-
eral directions, ranging from distributed systems to approximation algorithms and to 
algorithmic game theory, also drawing on cellular automata from computational phys-
ics. So, we expect that by studying Emerge-Sort alongside established and solidly 
founded paradigms we will be able to research termination and complexity issues of 
its algorithmic nature using arguments that may have been applied in these domains; 
this will also allow us to gain more insight into the crossing lines between such para-
digms. 
 
Acknowledgements. Loizos Michael and Ioannis Stamatiu have offered valuable 
comments on mathematical properties of card shuffling and ring networks. Emerge-
Sort is fully implemented in Java and is available on demand for academic purposes. 
An earlier version was implemented in Maple. It is temporarily hosted at 
http://student-support2.ouc.ac.cy:8080/emergesort/index.html, where a few variants 
are also demonstrated. 
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