
I. Maglogiannis, V. Plagianakos, and I. Vlahavas (Eds.): SETN 2012, LNAI 7297, pp. 98–105, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Emerge-Sort: Swarm Intelligence Sorting

Dimitris Kalles1,2 , Vassiliki Mperoukli1, and Andreas Papandreadis2

1 Hellenic Open University, Patras, Greece
kalles@eap.gr, vickybergr@yahoo.gr, bp@hol.gr

2 Open University of Cyprus, Nicosia, Cyprus

Abstract. We examine sorting on the assumption we do not know in advance
which way to sort. We use simple local comparison and swap operators and
demonstrate that their repeated application ends up in sorted sequences. These
are the basic elements of Emerge-Sort, an approach to self-organizing sorting,
which we experimentally validate and observe a run-time behavior of O(n2).

1 Introduction

Sorting has been one of the first areas of computer science to showcase efficient algo-
rithms to stand the test of time. Our key motivation to examine sorting is to investi-
gate what is the minimum structure of local operators whose repetitive application
ends up in sorted sequences. We relax the assumption that we know which way to
sort, yet arrive at a sorted sequence by simple local interactions, which are also able to
address on-the-fly modifications of the sequence-to-be-sorted. Accordingly, our con-
tribution lies with the development of several such operators and the validation of
their emergent sorting efficiency independently of any global sorting direction bias.

A simple example may help to visualize such a context. Consider a database which
is distributed across several sites, with each site maintaining a sorting that best suits
its local needs (either largest-first or smallest-first). If there is a need to redistribute
objects across the sites, according to their order, so as to avoid asking all sites where
an object might be located, one can either opt for some sort of centralized control over
who-comes-first or, simply, let each object re-arrange itself in the local neighborhood.
Additionally, when new objects are inserted dynamically into any of the available
sites, one can either explicitly direct each one of them to the correct database partition
or, simply, wait until the object finds its way to a partition. Similar problems have
been long studied in the distributed computing literature [1][2][3], have attracted the
attention of the multiagent systems community [4][5] and the consensus reaching
community [6].

Locality is central to the swarm intelligence and game theory areas too. Swarm in-
telligence has gathered significant momentum since many traditional problems (graph
partitioning and clustering, among others) have been recast in terms of swarm beha-
vior. Swarm intelligence is at the junction of randomized behavior and local opera-
tions and has been demonstrated to solve difficult problems such as task scheduling
[7]. Now, emergent sorting is a behavior that has been documented in insect societies
and modeled via swarm intelligence principles [5][8], albeit in an unconventional

 Emerge-Sort: Swarm Intelligence Sorting 99

way; therein, sorting takes place in 2-D and consists of forming concentric circles
where items of similar size are at roughly the same distance from the centre. 2-D sort-
ing has received relatively scant attention since it is usually seen as a (difficult) case
of clustering, another classic problem that has been also recently addressed with
swarm intelligence [9]. It is interesting to note that swarm intelligence, beyond emer-
gent sorting [4], has been also related to autonomic computing research, mainly
through the observation of autonomic computing principles in biology inspired sys-
tems and the transfer of relevant concepts to problems in distributed computing [10].

Game theory, on another front, directs huge research effort at studying various
computational games from the point of view of reaching a Nash equilibrium; therein,
one usually favors algorithms that make little use of global knowledge and where
agents act competitively yet manage to converge to a state that satisfies them all [11].
In such settings, one asks what expense such anarchy incurs when seen from an opti-
mization point of view; in other words, if one could centrally design what each agent
will do, it is interesting to know how much effort one would save. The beauty of loca-
lized behavior in that setting usually comes from the appreciation of its robustness
and graceful behavior in adversarial contexts as well. The similarity to our problems
is quite straightforward: we are, what is the cost of not knowing which way we need
to sort and how can we induce our sequences to self-sort.

Seen from a more conventional computer science perspective, swarm intelligence
draws on several aspects of distributed computing [1][12][13], where, however, the
underlying algorithm usually assumes a sequence of distinct passes over the data to
achieve sorting. It is interesting to see that O(n2) seems to be the minimum one has to
pay for such sorting but we note that our local operators achieve such performance
without any knowledge of further steps. From that perspective, we view cellular au-
tomata to be also related to our approach [14][15, also taking into account the genetic
discovery of interesting behaviors for such automata [16][17] and their influence on
distributed co-ordination in consensus reaching problems [18][19].

The rest of this paper is structured in three sections. The next one is the core of the
paper: we sketch out the basic principles that have lead to Emerge-Sort by showing
how various modifications in simple local operators influence their capacity to finally
deliver sorted sequences. Following that, we show a brief experimental validation of
these fundamental concepts and, finally, we conclude the paper by drawing key con-
necting lines from our research to swarm intelligence and by setting forth the key
future research viewpoint.

2 Developing Emerge-Sort

There are six possible ways to permute a triple (a,b,c) of distinct numbers (Fig. 1);
additionally, un-sorted triples require a single swap between two elements to turn into
sorted ones.

It turns out that this simple operator cannot scale to arbitrarily selected triples of
any unordered sequence (it is not difficult to devise a counter-example demonstrating
eternal oscillation between two sequences), so the next best attempt is to minimally
extend this operator.

100 D. Kalles, V. Mperoukli, and A. Papandreadis

Fig. 1. Possible permutations and swaps to sort any three numbers

Interestingly, the extension is quite simple: sort the triple in the direction indicated
by a majority vote among all triple members’ direction preferences. Such direction
preference (bias) can be initialized at random for each member. In effect, the new
local sorting operator (which, we stress, is confined to the triple’s limits):

- First, establishes a preference for a sorting direction,
- Then, enforces that direction by locally sorting the triple,
- Finally, modifies the sorting direction bias of the minority vote items.

So, we have substituted the “to make as few moves as possible” approach with a still
very simple one, namely “to make as few direction bias changes as possible” (which,
of course, means that the arrows shown in Fig. 1, about how permutations are turned
into sorted triples, are no longer valid). The new approach creates overlapping triples
that compete for setting the sorting direction of the sequence. But, this suffices for the
sequence to be eventually sorted.

2.1 A Proof of Concept

As a convention, let us use A to denote an ascending sorting bias (for left-to-right),
and D to denote a descending sorting bias (again, for left-to-right). Let us also assume
that we have a sequence of length n to sort. A triple is uniquely identified by the loca-
tion of its middle element, i, with 1 ≤ i ≤ n and we employ a simple wrapping that
arranges the sequence in a circle (ring).

Now, assume that at initialization, all numbers in the sequence have equal proba-
bility of having a sorting bias direction of A or D. Note that the sorting bias in a triple
only conveys information as to what sorting direction it plans to employ.

We now show an example of a neck-to-neck competition for establishing the bias;
it will then be easier to develop a general probabilistic argument.

Let us assume that a sequence has the following bias distribution: DDDDAAAA.
Some locations (underlined) belong to triples with competing biases: DDDDAAAA; let
us examine one such contest point at the centre of triple 5. For this point, triples 4, 5
and 6 compete to set its bias. Even if all triples act purely parallel, the one to fire last
gets the final opportunity to modify that location’s bias. If we examine all contest
points for the particular configuration set out above and enumerate all possibilities of
alternative triple firing orders, it turns out that, there is a 1/3 probability that there will
again be four As and four Ds and there is a 2/3 probability that either As or Ds will
overwhelm the other.

 Emerge-Sort: Swarm Intelligence Sorting 101

However, establishing a majority of one sorting direction bias will, quite probably,
create more triples of the same bias, increasing the probability that all triples will end
up with the same bias. Eventually, this sorts the sequence.

2.2 A Global Sorting Direction Bias Delivers a Sorted Sequence

When all triples have the same sorting direction bias, any triple that is being picked to
sort itself will contribute to the overall sorting.

A simple measure of unsorted-ness of any sequence is the number of alternating
runs, as defined by the times one has to change the upwards or downwards direction
when traversing the sequence, end-to-end. For example, the sequence (3, 5, 6, 2) has 2
alternating runs; a triple can have at most 2 alternating runs.

Assume that one has achieved a global sorting direction bias of A (of course, no
triple is aware that its bias is also a global one). Then, any time a triple is locally
sorted, it either decreases the number of alternating runs of its extended neighborhood
(and of the whole sequence, as a result) or it leaves that number unchanged. Each
alternative has a probability of ½.

Now, consider a sequence of length n, where, in one parallel round, all triples sort
themselves. Of course, we have no guarantee that the actual number distributions in
these triples will mean that a particular local sorting will decrease the overall number
of alternating runs with a probability of ½. However, we can approximate as 1/2n the
probability that no individual triple sorting will affect the overall sequence’s number
of alternating runs. Since this number converges very fast down to 0, an incremental
improvement (decrease) of 1 in the unsorted-ness measure is almost certain to happen.

Note that, whenever large chunks of the sequence are already sorted, there exist
fewer points which serve as ends of the alternating runs and the previous argument
does not hold. But, to compensate for that, we note that the actual numbers of alter-
nating runs is now much smaller itself, compared to when the sequence is shuffled.
The number of alternating runs can be viewed as a potential function, which, at every
point, strictly does not increase.

With a settled sorting direction bias, the maximum distance one number needs to
travel is n-1, so O(n) parallel steps suffice to sort the sequence. If we allow each triple
to fire independently of each other and randomly, then it may take O(n2) individual
triple local sorting operations to deliver the final sorted sequence.

2.3 Converging to a Global Sorting Direction Bias

Considering any triple in isolation, just one operation suffices to switch it to a com-
mon bias; any minority item cannot avoid having its flag overturned.

The next more complex case is to consider a quadruple with evenly distributed
flags. When examined in triples, it will also have a global direction bias settled fast;
the first step will change one flag and, then, a single flag cannot survive.

102 D. Kalles, V. Mperoukli, and A. Papandreadis

Things become more complicated with longer sequences. When examining an
ADDAA quintuple, oscillations can occur ad nauseam between alternating configura-
tions (for example, if we first examine a triple centered around a D item, then the
majority of flags features a D, which can change again if we examine a triple centered
around one of the remaining As).

The probability of oscillations strictly decreases the longer we examine local
triples and eventually one ends up in a sequence with a common flag; this happens
because we have a Markov chain with two equilibrium distributions, all As or all Ds,
whose stationary distribution (denoted as Mi for a square nxn matrix, with n being the
length of sequence) converges to a single column of 1’s. This is a probabilistic guar-
antee that all sub-sequences with the same flag will be eventually washed out.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

∞→∞→∞→∞→

∞→∞→

∞→∞→∞→∞→∞→

iiii

ii

iiiiii
nxnM

0.001

00

00001

001

001

……

…
…
…
…

Brief experimentation with several variants of the matrix above revealed that they
converged within 1% of the stationary form in O(n3logn). But, as we shall see in the
experimental section below, this is an unwarranted pessimistic estimate when com-
pared to the average sorting time for a variety of sequences.

3 Experimental Validation

To validate the principle of Emerge-Sort we describe a series of experiments we have
carried out across a range of input sizes and with several initial distributions of A and
D biases.

We review in Table 1 the results for n = 128. Each line corresponds to 100 experi-
ments. The % A column indicates the percentage of elements that have been initia-
lized with an A sorting direction bias. It is reasonable, of course, that when a large
majority of elements has the same sorting direction bias, there is a high probability
that the sequence will eventually be sorted according to that bias. The % sorted As-
cending column confirms just that.

Note that, as earlier argued, it is also reasonable that the faster all sequence
elements converge to a common sorting direction bias, the faster it will be able to
eventually sort itself. This is confirmed by the # Rounds column, which reports the
individual number of triples examined. It is also confirmed by the # Moves columns,
which shows how many numbers are moved per round on average. Since triples are
fired at random, rounds are measured in terms of individual triple inspections.

 Emerge-Sort: Swarm Intelligence Sorting 103

Table 1. Results for n = 128 (100 experiments)

% A % sorted Ascending # Rounds # Moves

99 100 4614 51
95 100 5163 52
90 99 6099 53
80 97 7778 58
70 96 9346 64
60 68 10697 74
55 63 10985 76
50 54 10949 76

We present in Fig. 2 a clear O(n2) pattern for larger values of n.

Fig. 2. Results for n = 128, 256, 512, 1024, 2048

4 Conclusions and Future Directions

We have described the concepts and a brief experimental validation of Emerge-sort, a
sorting algorithm that does not depend on being told which way a sequence should be
sorted and yet manages to sort that sequence, usually alongside a dominant preference
among the sequence numbers, based on randomly applied simple local operators.

Emerge-sort closely follows the concepts of ant based algorithms, where sequences
of numbers are societies of individuals who act locally and are unaware of the

104 D. Kalles, V. Mperoukli, and A. Papandreadis

consequences of their actions on the sequence as a whole. Therein no shared know-
ledge, control or logic exists; individuals are only triggered into action via messaging
by objects within their reach. Direction bias flags act as pheromones that are laid on
the ground (this is the stigmergy concept), inviting others to follow a certain direction
(this is the chemotaxis concept). Although the society has no hierarchies, large num-
bers can be viewed as foraging agents who influence others by helping settle direction
issues (much like how taller children act when a group of children self-arranges itself
in a circle according to height in a schoolyard). Furthermore, when a triple finds itself
ordered it remains idle, being oblivious to a grander common global goal. But this
delivers the n/logn penalty which this society pays for not having an a priori leader to
settle the direction issue.

Research in Emerge-sort started as an experimental effort into investigating the
dynamics of local operators regarding their ability to generate order. But, in compu-
ting, the trade-off between local operators and co-ordination has been studied in sev-
eral directions, ranging from distributed systems to approximation algorithms and to
algorithmic game theory, also drawing on cellular automata from computational phys-
ics. So, we expect that by studying Emerge-Sort alongside established and solidly
founded paradigms we will be able to research termination and complexity issues of
its algorithmic nature using arguments that may have been applied in these domains;
this will also allow us to gain more insight into the crossing lines between such para-
digms.

Acknowledgements. Loizos Michael and Ioannis Stamatiu have offered valuable
comments on mathematical properties of card shuffling and ring networks. Emerge-
Sort is fully implemented in Java and is available on demand for academic purposes.
An earlier version was implemented in Maple. It is temporarily hosted at
http://student-support2.ouc.ac.cy:8080/emergesort/index.html, where a few variants
are also demonstrated.

References

1. Flocchini, P., Kranakis, E., Krizanc, D., Luccio, F.L., Santoro, N.: Sorting and election in
anonymous asynchronous rings. Journal of Parallel and Distributed Computing 64, 254–
265 (2004)

2. Prasath, R.: Algorithms for Distributed Sorting and Prefix Computation in Static Ad Hoc
Mobile Networks. In: 2010 International Conference on Electronics and Information Engi-
neering, vol. 2, pp. 144–148 (2010)

3. Israeli, A., Jalfon, M.: Uniform Self-Stabilizing Ring Orientation. Information and Compu-
tation 104(2-3), 175–196 (1993)

4. Casadei, M., Gardelli, L., Viroli, M.: Collective Sorting Tuple Spaces. In: 11th Interna-
tional Workshop on Cooperative Information Agents, Delft, The Netherlands, pp. 255–269
(2006)

5. Casadei, M., Menezes, R., Viroli, M., Tolksdorf, R.: Using Ant’s Brood Sorting to
Increase Fault Tolerance in Linda’s Tuple Distribution Mechanism. In: Klusch, M., Hin-
driks, K.V., Papazoglou, M.P., Sterling, L. (eds.) CIA 2007. LNCS (LNAI), vol. 4676,
pp. 255–269. Springer, Heidelberg (2007)

 Emerge-Sort: Swarm Intelligence Sorting 105

6. Bénézit, F., Thiran, P., Vetterli, M.: The Distributed Multiple Voting Problem. IEEE Jour-
nal of Selected Topics in Signal Processing 5(4), 791–804 (2011)

7. Bonabeau, E., Theraulaz, G., Deneubourg, J.-L.: Fixed Response Thresholds and the Regu-
lation of Division of Labour in Insect Societies. Bulletin of Mathematical Biology 60,
753–807 (1998)

8. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press, New York (1999)

9. Handl, J., Meyer, B.: Ant-based and swarm-based clustering. Swarm Intelligence 1(2), 95–
113 (2008)

10. Babaoglu, O., Canright, G., Deutsch, A., Di Caro, G., Ducatelle, F., Gambardella, L., Gan-
guly, N., Jelasity, M., Montemanni, R., Montresor, A., Urnes, T.: Design patterns from bi-
ology to distributed computing. ACM Transactions on Autonomous and Adaptive Sys-
tems 1(1), 26–66 (2006)

11. Koutsoupias, E., Papadimitriou, C.: Worst case equilibria. In: Annual Symposium on
Theoretical Aspects of Computer, pp. 404–413. Springer (1999)

12. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communications of
the ACM 17(11), 643–644 (1974)

13. Loui, M.C.: The complexity of sorting on distributed systems. Information and Control 60,
70–85 (1984)

14. Gonzaga de Sa, P., Maes, C.: The Gacs-Kurdyumov-Levin automaton revisited. Journal of
Statistical Physics 67(3-4), 507–522 (1992)

15. Gordillo, J.L., Luna, J.V.: Parallel sort on a linear array of cellular automata. In: Interna-
tional Conference on Systems, Man and Cybernetics, vol. 2, pp. 1903–1907 (1994)

16. Mitchell, M., Hraber, P.T., Crutchfield, J.P.: Revisiting the edge of chaos: Evolving cellu-
lar automata to perform computations. Complex Systems 7, 89–130 (1993)

17. Andre, D., Bennett III, F.H., Koza, J.R.: Discovery by genetic programming of a cellular
automata rule that is better than any known rule for the majority classification problem. In:
First Annual Conference on Genetic Programming, Stanford, CA, pp. 3–11 (1996)

18. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Gossip algorithms: Design, analysis and ap-
plications. In: 24th Annual Joint Conference of the IEEE and Communication Societies,
pp. 1653–1664 (2005)

19. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In:
IEEE Conference on Foundations of Computer Science, pp. 482–491 (2003)

	Emerge-Sort: Swarm Intelligence Sorting
	Introduction
	Developing Emerge-Sort
	A Proof of Concept
	A Global Sorting Direction Bias Delivers a Sorted Sequence
	Converging to a Global Sorting Direction Bias

	Experimental Validation
	Conclusions and Future Directions
	References

