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Abstract. Novel criteria that reformulate the Quadratic Mutual Infor-
mation according to Fisher’s Discriminant Analysis are proposed for su-
pervised dimensionality reduction. The proposed method uses a
quadratic divergence measure and requires no prior assumptions about
class densities. The criteria are optimized using gradient ascent with
initialization using random or LDA based projections. Experiments on
various datasets are conducted and highlight the superiority of the pro-
posed approach compared to the standard QMI criterion.
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1 Introduction

Dimensionality reduction is a commonly used step in machine learning, especially
when dealing with a high dimensional space of features. The original feature
space is mapped onto a new, reduced dimensionality space and the examples
to be used by machine learning algorithms are represented in that new space.
Dimensionality reduction saves memory usage for storing training patterns and
reduces the computation required for distance calculation. This way we improve
performance and alleviate the effect of the curse of dimensionality [2]. Apart
from time, dimensionality reduction is also crucial in terms of separability, thus
a good selection or extraction lies to the criterion to be evaluated and enhanced.

Feature extraction, uses a transform to lower dimensions such as a projection
matrix, which maximizes or minimizes a given criterion. The data transformation
may be linear, as in Principal Component Analysis (PCA) [6] or Independent
Component Analysis (ICA) [1], but many nonlinear dimensionality reduction
techniques also exist such as kernel PCA [10].

In pattern classification, we are interested in methods that best separate the
classes. Such a technique is Linear Discriminant Analysis (LDA), where a trans-
form is produced that enhances the discrimination between data in different
classes [5]. LDA assumes that samples are normally distributed, although tech-
niques have been proposed for bypassing that problem [7]. In addition, LDA is
limited to the number of features it can produce which is, Nc − 1 where Nc is
the number of classes, but extensions have been proposed to overcome this [8].
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Information theory provides us measures that can be used to optimize class
separability. Mutual information between the class labels and the transformed
data to fewer dimensions acts as a more general criterion that overcomes many
limitations of the methods discussed above. An even more sophisticated approach
is given in [12]. This approximation is inspired by the quadratic Renyi entropy,
it is differentiable and it can both avoid the knowledge of density of the classes
and be applied to large training datasets. It can provide the ability to perform
linear mappings for clustering [13] and even feature extraction [9].

A combination of QMI and LDA is introduced in this paper to provide a novel
dimensionality reduction method that enhances class separability. The proposed
approach uses the definition of QMI in order to reformulate criteria inspired
by LDA. The proposed criteria are given in the form of ratios that enforce the
within class similarity and between class dissimilarity. The novel optimization
criteria then can be efficiently optimized using gradient ascent and update rules
are derived for the projection matrix.

The manuscript is organized as follows. The derivation of QMI starting from
Shannon’s entropy definition is described in Section 2. The novel criteria that
are inspired by LDA and combine measures that appear in QMI criterion are
presented in Section 3. Classification results using nearest neighbor classifier in
several datasets from the UCI machine learning repository are given in Section
4. Finally, conclusions are drawn in Section 5.

2 Prior Work and Problem Statement

Assume a random variable Y that models, yi ∈ Rd, that represent the projected
input data, xi ∈ RD, where D > d, and a discrete-value random variable C
representing class labels taking values from 1 to Nc. The projected data are
calculated by the product of each sample xi with the projection matrix W ∈
RD×d hence, yi = WTxi.

Using Shannon’s definition [11], the entropy of the discrete distribution, which
is a measure of the randomness or unpredictability of a sequence of symbols, is
H(C) = −∑

c P (c)log (P (c)), where P denotes a probability while a lower case
p denotes probability density. In general, the mutual information expresses the
reduction in uncertainty about one variable due to the knowledge of the other
variable, hence it can measure dependence between two variables, in our case
the difference H (C)−H (C|Y ) is the uncertainty about the class C by observing
the feature vector y. It is defined as:

I (C, Y ) = H (C)−H (C|Y )

=
∑

c

∫

y

p (c,y) log

(
p (c,y)

P (c) p (y)

)

dy (1)

Torkkola [12] has proposed the quadratic mutual information between the data
sample and the corresponding class labels to be calculated as:

IT (C, Y ) = VIN + VALL − 2VBTW (2)
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where:

– VIN is expressing the interactions between pairs of samples inside each class,
summed over all classes.

– VALL is expressing the interactions between all pairs of samples, regardless
of class, weighted by the sum of squared class priors.

– VBTW is expressing the interactions between samples of a particular class
against all samples weighed by the class prior and summed over all classes.

Details can be found on [12]. The objective is to find a transform g such that
y = g(xi) maximizes IT (C, Y ).

3 Update Methods Inspired by Discriminant Analysis

The objective of LDA is to perform dimensionality reduction while preserving
as much of the class discriminatory information as possible. In general, in order
to use LDA for multiple classes, we first define the scatter matrices, SB and SW

which are the between classes scatter matrix and the within class scatter matrix,
respectively. Those matrices are computed as:

SB =

Nc∑

c=1

P (c)(µc − µ)(µc − µ)T (3)

SW =

Nc∑

c=1

∑

i∈c

(xi − µc)(xi − µc)
T (4)

where µ is the overall mean vector of the data, µc is the mean vector of class c
and xi is the i-th vector that belongs to class c. Scatter matrices are quite similar
to VIN and VBTW , however, whereas VIN and VBTW represent similarity, SB and
SW represent dissimilarity. The corresponding criterion that needs maximization
in the case of LDA is the following:

J(w) =
wTSBw

wTSWw
(5)

That is, based on (5), we propose a criterion inspired by QMI that has the
form of (5). In order to increase the sample interactions inside each class while
decreasing the sample interactions of different classes, we propose the transform
of (2) to any of the following two criteria:

IB (C, Y ) =
VIN

VBTW
(6)

IA (C, Y ) =
VIN

VALL
(7)

Let N be the number of samples, Jp the number of samples for each class, cp,
and G(y,Σ), be a n–dimensional Gaussian function where Σ is the covariance
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matrix. The prior probability of each class is P (cp) =
Jp

N , thus,
∑Nc

p=1 Jp = N .
The Parzen density estimation, that corresponds to the density of each class,
the joint density, as well as the density of all classes is given by:

p(y|cp) = 1

Jp

Jp∑

j=1

G
(
y − ypj , σ

2I
)

(8)

p(cp,y) =
1

N

Jp∑

j=1

G
(
y − ypj , σ

2I
)

(9)

p(y) =
1

N

N∑

i=1

G
(
y − yi, σ

2I
)

(10)

respectively, where I is the identity matrix. Now analysing, and computing com-
ponents in (6) and (7) while using Parzen density estimation given in (8), (9)
and (10) we obtain:

VIN =
∑

c

∫

y

p (c,y)2 dy =
1

N2

Nc∑

p=1

Jp∑

k=1

Jp∑

l=1

G
(
ypk − ypl, 2σ

2I
)

(11)

VALL =
∑

c

∫

y

P (c)
2
p (y)

2
dy =

1

N2

(
Nc∑

p=1

(
Jp
N

)2
)

N∑

k=1

N∑

l=1

G
(
yk − yl, 2σ

2I
)

(12)

VBTW =
∑

c

∫

y

p (c,y)P (c) p (y) dy =
1

N2

Nc∑

p=1

Jp
N

Jp∑

j=1

N∑

k=1

G
(
ypj − yk, 2σ

2I
)

(13)

It is straightforward to show that if all classes have the same number of samples
then VALL = VBTW that is, if all classes have the same probability to occur then
(12) becomes equal to (13).

All different measures given in (2), (6) and (7), need a maximization update
rule for the given projection matrix W. The projections of the input data, derive
directly from the projection matrix W, thus:

W = argmax
W

(I({ci,yi})) (14)

Unfortunately, the optimization of the criterion in (14) can not be solved ana-
lytically, hence, a numerical optimization is needed. Using gradient ascent with
learning rate, ρ for updating W, the update rule of the projection matrix can
be the following:

Wt+1 = Wt + ρ
∂I

∂W
(15)

Using the chain rule, one can obtain the following:

∂I

∂W
=

N∑

i=1

∂I

∂yi

∂yi

∂W
=

N∑

i=1

∂I

∂yi
xT
i (16)



94 V. Gavriilidis and A. Tefas

hence, we need to find the derivatives of (2), (6) and (7). We also impose the
constraint, WTW = I, in order to have an orthonormal subspace as solution
and prevent convergence to trivial infinite solutions, hence after updating W
Gram–Schmidt orthonormalization is used.

Derivatives represent the direction where each sample would likely move af-
ter the transformation is applied. Firstly, we know that the derivative of the
potential between two samples is computed as:

∂

∂yi
G
(
yi − yj , 2σ

2I
)
= G

(
yi − yj , 2σ

2I
) (yj − yi)

2σ2
(17)

We can now perform gradient ascent using the derivatives of (11), (12) and (13),
which are given by:

∂

∂yci
VIN =

1

N2σ2

Jc∑

k=1

G
(
yck − yci, 2σ

2I
)
(yck − yci) (18)

∂

∂yci
VALL =

1

N2σ2

(
Nc∑

p=1

(
Jp
N

)2
)

N∑

k=1

G
(
yk − yi, 2σ

2I
)
(yk − yi) (19)

∂

∂yci
VBTW =

1

N2σ2

Nc∑

p=1

Jp + Jc
2N

Jp∑

j=1

G
(
ypj − yci, 2σ

2I
)
(ypj − yci) (20)

We can now calculate the gradient of (2), (6) and (7) as follows:

∂IT
∂yi

=
∂VIN

∂yi
+

∂VALL

∂yi
− 2

∂VBTW

∂yi
(21)

∂IB
∂yi

=
VBTW

V 2
BTW

∂VIN

∂yi
− VIN

V 2
BTW

∂VBTW

∂yi
(22)

∂IA
∂yi

=
VALL

V 2
ALL

∂VIN

∂yi
− VIN

V 2
ALL

∂VALL

∂yi
(23)

These gradients can be calculated using (18), (19) and (20). Using (21), (22) and
(23) in (16) and the result in (15) we derive the update rules for updating the
projection matrix W until convergence.

Except for the calculation of gradients, we also need to somehow initialize
W. There are many options, among them initializations based on linear feature
extraction, that one can find in the literature, like PCA, ICA and LDA can be
used. In the proposed approach we use random values and LDA as proposed in
[12].

4 Experimental Results

We compared the performance of dimensionality reduction using the standard
QMI definition against the criteria proposed in (6) and (7) which are called for
simplicity MIB and MIA, respectively. To do so, several databases from the UCI
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machine learning repository [4] have been used in the experiments. The datasets
that were used are presented in Table 1.

All these datasets were scaled to the interval [0, 1]. To evaluate the test error
on the various experiments we used 5 × 2 fold cross validation. Moreover, the
classifier that was used was a k–nearest neighbor and we provide results for W
initializations using both random projections and LDA projections. We should
also mention that the same random initializations have been used for all criteria.

In addition, the number of dimensions that we tested are from 1 to Nc − 1
due to LDA limitations, although we do not show all the results in CMU face
images because of the large number of classes it possess. As explained earlier,
measures MIB in (6) and MIA in (7) have no difference when all classes have
the same number of samples, so test results of these measures are substituted
with the test results of the measure MIBA which can be either one. Tables 2 - 4
show classifications test error results, where in the first column the measure to
be maximized and the initialization of W is given.

Table 1. UCI Machine Learning Repository Data Sets Characteristics

Database Samples Dimension Classes

CMU faces 640 960 20
Balance 625 4 3
Ionosphere 351 34 2
Ecoli 336 7 8
Wine 178 13 3
Iris 150 4 3

CMU Face Images. This data consists of 640 greyscale face images of people
taken with varying pose, expression, eyes (wearing sunglasses or not). There are
32 images for each person capturing every variation combination. Each sample
image was resized to 30×32. Observing Table 2, we can notice that the proposed
MIBA criterion is much better when W is initialized by LDA. In addition we
performed Dietterich f statistical test [3], and gained a value over 8, on LDA
initialization, hence the error rates difference between the criteria is statistically
significant.

Ecoli. This dataset contains protein localization sites. As can be seen in Table 3,
proposed criteria are better than the standard QMI criterion in both initializa-
tion methods. In addition, in figure 1 a projection in two dimensions revealing

Table 2. Error rates on CMU faces Images

Dimension 1 2 3 4 8 12 15 16 17 18 19

QMI , Random 52.50 28.94 22.69 15.06 17.50 19.62 13.56 15.62 13.81 15.44 10.94
MIBA, Random 74.19 59.75 48.06 42.00 19.19 19.94 13.56 15.62 13.81 15.44 10.94

QMI , LDA 49.50 24.00 12.00 7.19 5.94 4.50 4.87 6.12 3.44 4.94 4.56
MIBA, LDA 27.25 4.38 3.44 3.25 2.81 2.25 2.69 1.94 2.94 3.81 5.25
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information about class separability and compactness is given. MIA has pro-
duced a projection that attempts to separate all the classes. Standard QMI is
very compact but fails to provide any separability between classes, while MIA
is superior for classification but is not as compact as the standard QMI.

Table 3. Error rates on Ecoli

Dimension 1 2 3 4 5 6 7

QMI , Random 36.63 32.29 25.90 20.60 19.76 17.23 15.66
MIB , Random 35.90 23.37 17.71 17.47 16.75 15.78 15.66
MIA, Random 32.77 22.89 18.31 16.99 16.99 15.42 15.66

QMI , LDA 36.27 28.31 29.40 22.53 20.72 17.59 13.13
MIB , LDA 36.51 20.72 18.31 16.87 17.35 15.90 13.01
MIA, LDA 36.39 21.33 18.07 16.87 17.95 16.14 13.13

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-0.8

-0.6

-0.4

-0.2

0

0.2

(a) QMI

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
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0

0.2

0.4

0.6

0.8

1

(b) MIA

Fig. 1. Projected samples of the Ecoli dataset using the same random initialization.
The QMI criterion is given in (a) and MIA criterion in (b).

Datasets with Small Number of Classes. Balance, Ionosphere, Wine and
Iris are some datasets that possess a small number of classes and all results are
shown in Table 4. Overall, MIB or MIA is superior against standard QMI.

Table 4. Error rates on databases with small number of classes

Database Balance Ionosphere Wine Iris

Dimension 1 2 1 1 2 1 2

QMI , Random 23.78 20.19 42.40 33.18 30.68 4.53 4.80
MIB , Random 65.77 36.73 44.11 32.95 30.91 4.27 3.73
MIA, Random 66.09 37.24 42.29 32.95 31.36 4.27 3.73

QMI , LDA 8.97 10.26 39.20 32.73 30.45 8.53 3.47
MIB , LDA 9.29 10.26 33.83 34.77 29.55 3.47 2.67
MIA, LDA 8.91 10.26 32.57 34.77 29.77 3.47 2.67



Exploiting Quadratic Mutual Information for Discriminant Analysis 97

5 Conclusions

A novel method for dimensionality reduction and feature extraction inspired by
mutual information between features and class labels and using Linear Discrim-
inant Analysis criteria is proposed. As it has been illustrated, we can substitute
the standard QMI with the MIBA criterion which attains in most cases better
classification and separability characteristics. Future work will be directed on
overcoming the limitation of LDA initialization.
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