
Greedy Unsupervised Multiple Kernel Learning

Grigorios Tzortzis and Aristidis Likas

Department of Computer Science, University of Ioannina,
GR 45110, Ioannina, Greece
{gtzortzi,arly}@cs.uoi.gr

Abstract. Multiple kernel learning (MKL) has emerged as a powerful
tool for considering multiple kernels when the appropriate representation
of the data is unknown. Some of these kernels may be complementary,
while others irrelevant to the learning task. In this work we present an
MKL method for clustering. The intra-cluster variance objective is ex-
tended by learning a linear combination of kernels, together with the
cluster labels, through an iterative procedure. Closed-form updates for
the combination weights are derived, that greatly simplify the optimiza-
tion. Moreover, to allow for robust kernel mixtures, a parameter that
regulates the sparsity of the weights is incorporated into our framework.
Experiments conducted on a collection of images reveal the effectiveness
of the proposed method.

1 Introduction

Despite the widespread interest in kernel methods in various fields, such as ma-
chine learning, computer vision and bioinformatics, their application is severely
limited by the sensitivity to the choice of kernel. In recent years, multiple kernel
learning (MKL) techniques [5], that determine the weights for combining a set
of predefined (base) kernels as part of the learning process, have been developed
to alleviate the kernel selection problem. These multiple kernels may describe
different notions of similarity in the data, or, even, different modalities.

In this work, we focus on MKL clustering and employ the k -means intra-
cluster variance objective together with a linear combination for the base kernels.
Linearly mixing the kernels is the most common approach [2, 9, 6, 7, 11, 12], al-
though lately effort has been put into considering nonlinear combinations [10,3].
A simple iterative procedure is devised to recover the partitioning, using k -
medoids [1], and the kernel mixing coefficients, which are estimated by closed-
form expressions. Moreover, to avoid multiple restarts for k -medoids, a greedy
initialization strategy is developed.

An important aspect of MKL is the sparsity of the kernel combination. Sparse
approaches rely on the assumption that some kernels are irrelevant for the under-
lying problem and retain a few base kernels through an �1-norm regularizer on
the weights [9,12]. They are appealing since they greatly enhance interpretability
and their models are distinguished by small capacity. However, different kernels
may capture different aspects of the data and thus all kernels are important in
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this case, albeit to a different degree. Therefore, to provide a more robust rank-
ing of the kernels, based on their quality, the �2-norm regularizer was applied
in [13, 2], while in [6, 11] the general �p-norm regularizer was introduced, that
forces weights to become less sparse as p increases. Also, Lange and Buhmann [7]
learned a linear mixture of similarity matrices using an entropy criterion to regu-
late sparsity. In our approach, a parameter that must be set beforehand controls
the weights similarly to the �p-norm regularizer, allowing the exploitation of the
complementary information of the kernels. As shown in the experiments, the
results of using a single kernel or evenly all kernels can be vastly improved.

The rest of this paper is organized as follows. Next section contains the basics
about kernel-based clustering and the greedy initialization scheme. Our MKL
framework is detailed in Sect. 3. The empirical results are reported in Sect. 4,
before the concluding remarks of Sect. 5.

2 Feature Space Clustering

To uncover the hidden structures of a dataset X = {xi}Ni=1, xi ∈ �d it is common
practice to map the instances to a higher dimensional reproducing kernel Hilbert
space H, a.k.a. feature space, via a nonlinear transformation φ : X → H and
then perform clustering in spaceH. Thus it is possible to get nonlinear separators
in input space through linear separators in feature space.

Usually a kernel function K : X ×X → � [4] is applied to directly provide the
inner products in feature space without explicitly defining transformation φ (for
certain kernel functions the transformations are intractable). This gives rise to
the kernel matrixK ∈ �N×N , Kij = K(xi,xj) = φ(xi)

�φ(xj), which is the most
common way of representing similarity in feature space. An important property
is that the squared Euclidean distances in feature space can be computed using
solely the kernel matrix entries:

‖φ(xi)− φ(xj)‖2 = Kii − 2Kij +Kjj . (1)

2.1 k-Medoids

To partition dataset X into M disjoint clusters, {Ck}Mk=1, using a kernel matrix,
k -medoids [1] can be utilized to minimize the intra-cluster variance in feature
space (2) over mk and δik, where mk ∈ X is the k-th cluster medoid, δik is an
indicator variable with δik = 1 if xi ∈ Ck and 0 otherwise and lk is the index of
the data point corresponding to the k-th medoid, i.e. mk = xlk .

EH =

N∑

i=1

M∑

k=1

δik‖φ(xi)− φ(mk)‖2 =

N∑

i=1

M∑

k=1

δik(Kii − 2Kilk +Klklk) (2)

An analogous to typical k -means iterative procedure is employed to optimize
the objective, where the medoids and the cluster assignments are updated in
turn. This procedure converges to a local minimum that strongly depends on
the initialization of the medoids. To circumvent this problem and avoid multiple
restarts, we have adopted a greedy method for selecting initial medoids.
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2.2 Greedy Medoid Initialization

The greedy medoid initialization algorithm is an incremental approach for deter-
ministically finding a set ofM medoids to initialize the k -medoids algorithm. The
clusters are added to the solution one by one, such that the clustering objective
(2) is minimized.

In detail, given a kernel K, we start by considering the whole dataset as one
cluster, choosing the medoid of the dataset as the first medoid m1. Suppose that

k− 1 medoids have already been added and d
(k−1)
i denotes the squared distance

in feature space of instance xi to its cluster medoid in the solution with k − 1
clusters. In order to select the k-th medoid, a search is performed over all dataset
points to find the one that provides the greatest reduction of the objective (2).
If xj is chosen as the k-th medoid then it will allocate all instances that are
closer to it in feature space H than to their cluster medoid in the solution with

k − 1 clusters (d
(k−1)
i distance). For each such reallocation the objective will

decrease by d
(k−1)
i − ‖φ(xj) − φ(xi)‖2. Therefore, the overall reduction caused

by considering xj as the k-th medoid can be quantified as:

b
(k)
j =

N∑

i=1

max
{
d
(k−1)
i − ‖φ(xj)− φ(xi)‖2, 0

}
. (3)

Obviously, the point xj that yields the highest b
(k)
j value (denoted by xj∗) is

appointed as the k-th medoid, i.e. mk = xj∗ , and all points xi for which d
(k−1)
i >

‖φ(xj∗) − φ(xi)‖2 are assigned to the new cluster. It must be stressed that the
k−1 medoids remain the same. The above is repeated until k = M . After initial
medoids have been located, k -medoids can be executed to refine the result.

3 Learning a Linear Kernel Combination for Clustering

The integration of multiple high quality base kernels in the clustering process
can enhance the potential of clustering algorithms, whereas the inclusion of un-
informative or noisy kernels may lead to performance degradation. Therefore,
it is extremely important to develop algorithms that differentiate and rank the
kernels according to the conveyed information. To this end, we learn a weighted
linear combination of base kernels, together with the cluster assignments.

3.1 Problem Formulation

Let X = {xi}Ni=1, xi ∈ �d be a dataset with N instances and assume that V
kernel matrices, {K(v)}Vv=1, with corresponding feature spaces {H(v)}Vv=1, are
available. Those kernels can be thought of as providing different views1 of the
original instances. Our target is to partition dataset X into M disjoint clusters,

1 On the following we use the term view to refer to the different representations-
perspectives of the original dataset, implied by the different kernels.
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{Ck}Mk=1, by optimizing the intra-cluster variance objective in a feature space H̃,
whose definition is based on all available views.

A convenient way is to mix the kernels by considering their linear combination
(4), where wv are the kernel weights and p is an exponent that controls the
distribution of the weights across the views.

K̃ =

V∑

v=1

wp
vK

(v) , wv ≥ 0 ,

V∑

v=1

wv = 1 , p ≥ 1 (4)

The composite matrix K̃ is also a kernel matrix, to which a transformation φ̃
corresponds, i.e. K̃ij = φ̃(xi)

�φ̃(xj). The weights reflect the contribution of the

individual kernels in K̃ and an appropriate weight estimation should remove the
irrelevant kernels (zero weight), while allowing less informative ones to contribute
with a smaller degree (smaller weight). Weights are required to have unit sum
to avoid overfitting. The clustering optimization task can now be posed as:

min
{Ck}M

k=1
,{wv}V

v=1

N∑

i=1

M∑

k=1

δik‖φ̃(xi)− φ̃(mk)‖2
︸ ︷︷ ︸

E
H̃

, s.t. wv ≥ 0 ,

V∑

v=1

wv = 1 . (5)

Note that the exponent p must be set a priori and is not part of the optimization.
From (4) and (5) it easy to verify that that the intra-cluster variance in space

H̃ is the weighted sum of the intra-cluster variances in the individual feature
spaces H(v), under a common clustering (6).

EH̃ =

V∑

v=1

wp
v

N∑

i=1

M∑

k=1

δik(K
(v)
ii − 2K

(v)
ilk

+K
(v)
lklk

) =

V∑

v=1

wp
vEH(v) . (6)

3.2 The Algorithm

A two step iterative scheme, calledGreedy UnsupervisedMKL (GUMKL), that
alternates between computing the clusters for fixed weights and estimating the
weights for fixed clusters, is proposed. Note that weights are uniformly initialized,
as outlined in Algorithm 1.

Cluster Update. Given the weights, kernel K̃ is calculated and the greedy
method is applied to pick initial medoids for the current iteration. After that
k -medoids is employed to get the cluster assignments and their representatives.
Note that we elect to reinitialize the medoids at each iteration to avoid poor
minima, since the feature space H̃ may change considerably after updating the
weights, making the previous iteration medoids inappropriate for initialization.

Weight Estimation. For p > 1 the intra-cluster variance EH̃ is convex w.r.t.
the (constrained) weights, as can be confirmed from (6). Hence, the optimal
values for the weights for the current clusters can be determined by plugging
into (6) the constraints from (5), through a Lagrange multiplier, and setting the
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Algorithm 1. Greedy Unsupervised MKL

Input: Kernel matrices {K(v)}Vv=1, Number of clusters M , Exponent p (p ≥ 1).
Output: Clustering solution {Ck}Mk=1, Weights {wv}Vv=1.

1: t = 0
2: w

(0)
v = 1/V , v = 1, . . . , V //Initial weights.

3: repeat
4: t = t+ 1

5: K̃(t) =
∑V

v=1

(
w

(t−1)
v

)p

K(v)

6: ({l(t)k }Mk=1)=greedy-medoids-initialization(K̃(t))

7: ({l(t)k }Mk=1, {C(t)
k }Mk=1, E (t)

H̃
)=k -medoids(K̃(t), {l(t)k }Mk=1)

8: Update the view weights w
(t)
v , v = 1, . . . , V , through (7), (8).

9: until |E (t)

H̃
− E (t−1)

H̃
| < ε

derivatives w.r.t. wv to zero. After some manipulation the following closed-form
solution is derived:

wv = 1/

V∑

v′=1

( EH(v)

EH(v′)

) 1
p−1

, p > 1 . (7)

For p = 1 the optimization (5) is actually a linear program and the solution lies
on the corners of the simplex (8).

wv =

{
1 , v = argminv′ EH(v′)

0 , otherwise
, p = 1 (8)

Note that for 0 < p < 1, EH̃ becomes concave (6), thus the updates (7) would
increase EH̃, which, of course, is not desired.

From (7) it can be observed that views with lower intra-cluster variance EH(v)

are assigned higher weights, hence kernels are ranked according to their quality
as reflected through EH(v) . The exponent p acts as a regularizer on the ranking.
The greater (smaller) the p value is, the differences between the views are sup-
pressed (amplified) and the weights become more uniform (sparser) (i.e. their
distribution is more flat (more peaky)). Moreover, for p = 1 a completely sparse
outcome emerges, where all views, except one, are discarded (8). In the limit
p → ∞, we get that wv = 1/V from (7) , i.e. all views are equally considered, ir-
respectively of their quality. Naturally, the most appropriate p value will depend
on the underlying problem and the relative quality of kernels.

Convergence and Refinement. k -medoids monotonically decreases the intra-
cluster variance and the subsequent weight updates yield a further reduction.
However, the greedily selected medoids at the beginning of each iteration may in-
crease the objective. Therefore, GUMKL cannot be guaranteed to monotonically
converge, although this scenario rarely occurred during our experimentation.

It is possible to refine GUMKL results by running a kernel-based algorithm,
using the composite kernel produced by GUMKL. In the empirical study we
applied kernel k -means [4] and the clustering solution was further improved.
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Table 1. Category composition of the tested corel datasets

Dataset Categories
D1 owls hippos trains animal paintings
D2 owls hippos trains cargo ships
D3 buses leopards trains cargo ships
D4 eagles elephants trains passenger ships
D5 owls mammals with horns roses cargo ships

Fig. 1. Examples of images used in the experiments

4 Experimental Results

The effectiveness of GUMKL is evaluated on the task of unsupervised object
category recognition on the corel images collection. There are 34 categories in
total, each with 100 images that mainly consist of a salient foreground object
(Fig. 1). Seven modalities, three color-related and four texture-related modal-
ities, are available2 in the form of attribute vectors, which naturally produce
seven base kernels (each view corresponds to a modality).

To determine whether the proposed technique combines the kernels effectively
and investigate the influence of the exponent p on the weight distribution and
the returned clusters, GUMKL has been executed for various p > 1 values. It
is compared to two baselines; i) selecting the best view in terms of intra-cluster
variance and splitting the dataset using the corresponding kernel only (GUMKL
for p = 1) and ii) evenly considering all views by taking a uniform sum of the
kernels (GUMKL for p → ∞). For the second baseline, a single iteration of
Algorithm 1 is executed without updating the weights.

Regarding the setup of the experiments, five four class datasets were created
from the collection, whose classes are described in Table 1. The linear kernel
function was applied on the attribute vectors of each modality to compute the
seven kernels, which makes the second baseline (p → ∞) equivalent to merging
the modalities. The number of clusters was always set equal to the true number
of classes. To assess the quality of the returned clusters, the NMI criterion [8]
is used. Higher NMI values indicate a better partitioning. Finally, the reported
results were always refined by a run of kernel k -means as discussed in Sect. 3.2.

The obtained results are depicted in Figs. 2 and 3. It is evident that GUMKL
systematically and considerably outperforms the baselines. Hence, exploiting
multiple kernels, by adjusting the mixing coefficients according to the properties
of each view, can improve clustering accuracy. A single kernel (p = 1) is always
inferior to using multiple kernels, even to the simplest case of equal weights (p →
∞), showing that the modalities contain complementary information. Therefore,
an aggressive weighting strategy results in loss of useful information. To add to

2 http://www.cs.virginia.edu/~xj3a/research/CBIR/Download.htm

http://www.cs.virginia.edu/~xj3a/research/CBIR/Download.htm
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Fig. 2. Clustering performance comparison of GUMKL, for various p values, to the
two baselines (best kernel, uniform)
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Fig. 3. Weight distribution of GUMKL for indicative p values and of the two baselines
(best kernel, uniform). The modalities, left to right, are color histogram, moment and
coherence, coarseness and directionality of tamura texture, wavelet and mrsar texture.

that, GUMKL for p = 1.5 that produces a very sparse solution (Fig. 3), clearly
underperforms. As p increases, coefficients exhibit a more uniform distribution,
but the proposed method seems to be quite insensitive to p, if a reasonable value
is chosen that avoids extremes (2 < p < ∞). The highest NMI is usually attained
for p ∈ [2.5, 3.5], which provides a nice balance between high sparsity and high
uniformity. Finally, similar conclusions to the above can be drawn when the
kernel k -means refinement is not applied, however the NMI values are lower.
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5 Conclusions

We have proposed an unsupervised multiple kernel learning method for linearly
combining a set of base kernels under the intra-cluster variance objective. Closed-
form expressions are obtained for the combination weights, whose distribution is
moderated by a parameter p that allows all kernels to contribute to the solution
with distinct degrees. Stable performance is demonstrated in the experiments for
a wide range of p, surpassing the compared baselines of single kernel clustering
and uniform kernel summation.

In future work, a rigorous comparison to other MKL methods will be carried
out. As the appropriate choice of p depends on the dataset, possible ways of
automatically adjusting p will be explored. Moreover, implementing nonlinear
MKL under the presented framework is in our plans.
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