
SWRL2COOL: Object-Oriented Transformation

of SWRL in the CLIPS Production Rule Engine

Emmanouil Rigas1, Georgios Meditskos2, and Nick Bassiliades2

1 School of Electronics and Computer Science, University of Southampton, UK
er2g11@soton.ac.uk

2 Department of Informatics, Aristotle University of Thessaloniki, Greece
{gmeditsk,nbassili}@csd.auth.gr

Abstract. The Semantic Web Rule Language (SWRL) is a W3C mem-
ber submission rule language for ontologies. It is based on a combination
of the OWL DL and OWL Lite sublanguages of the OWL Web On-
tology Language with the Unary/Binary Datalog RuleML sublanguages
of the Rule Markup Language. In this paper we propose a transfor-
mation of SWRL rules into the object-oriented rule language of CLIPS
(COOL). The purpose of this transformation is to enhance an already ex-
isting CLIPS-based OWL ontology reasoner, namely O-DEVICE, with
the ability to import and execute SWRL rules during the process of
building custom ontology-based production rule programs.

Keywords: SWRL, Production Rules, CLIPS, OWL.

1 Introduction

SWRL [1] is a rule language based on a combination of OWL with the Unary/
Binary Datalog sublanguages of RuleML. SWRL enables Horn-like rules to be
combined with an OWL knowledge base. Negation is not explicitly supported
but only indirectly through OWL DL (e.g. complements). Its main purpose is to
provide a formal meaning of OWL ontologies and extend OWL DL with rules.

In existing ontology reasoning implementations, although it is possible to
manipulate ontologies using the SWRL rule notation, for example in KAON2
[2] and Pellet [3], it is not possible (or it is not efficient at least) to define a
complete rule program over the ontology since they are not native rule engines.
To this end, the use of a rule system that is able to reason over ontologies
gives the opportunity to utilize directly the ontology information by building
knowledge-based systems. Ontologies can be inserted into the system, and after
the materialization of the semantics through the reasoning procedure, that is, the
application of inference rules in order to deduce new information (entailment),
user-defined rules can operate over the materialized knowledge. Based on this
idea, we have developed O-DEVICE [4] on top of the CLIPS production rule
engine. Its reasoning process is characterized by the transformation of ontological
information into the object-oriented model of the COOL language of CLIPS and
the application of inference production rules over the generated object-oriented

I. Maglogiannis, V. Plagianakos, and I. Vlahavas (Eds.): SETN 2012, LNAI 7297, pp. 49–56, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

50 E. Rigas, G. Meditskos, and N. Bassiliades

schema. In that way, custom object-oriented rule programs can be developed on
top of the transformed ontological knowledge using the efficient RETE engine of
CLIPS. An example of such an application is Software Antipatterns [5].

In this paper, we propose an object-oriented transformation of SWRL rules
into the COOL language of CLIPS in order to be able to operate on top of the
transformed object-oriented ontological model that is created by O-DEVICE.
Our goal is to enable O-DEVICE to import and execute SWRL rules and there-
fore, easing the development of knowledge-based systems on top of ontologies in
CLIPS using a well-defined and widely adopted ontology rule language.

The rest of the paper is structured as follows: Section 2 overviews the syntax
of the COOL production rules in CLIPS. Section 3 describes the XSLT trans-
formations that are applied by SWRL2COOL and present a complete example.
Finally, in sections 4 and 5 we present related work and we conclude, respectively.

2 The CLIPS Production Rule Engine

CLIPS1 is a RETE-based production rule engine written in C that was devel-
oped in 1985 by NASA’s Johnson Space Center and it has undergone continual
refinement and improvement ever since. One of the most interesting capabili-
ties of CLIPS is that it integrates the production rule paradigm with the OO
model, which can be defined using the COOL (CLIPS Object-Oriented Lan-
guage) language. In that way, classes, attributes and objects can be matched on
the production rule conditions, as well as to be altered on rules actions.

2.1 COOL Production Rules in CLIPS

A production rule in CLIPS is defined using the defrule construct that consists
of conditions and actions separated with the symbol =>. The conditions can
match both facts and objects, whereas the actions define the actions that should
be taken upon the satisfaction of all the conditions.

Objects of user-defined classes in COOL can be pattern-matched on the left-
hand side of rules using object patterns of the form

<object-pattern> ::= (object <attribute-constraint>*)

<attribute-constraint> ::= (is-a <constraint>) |

(name <constraint>) | (<slot-name> <constraint>*)

The is-a constraint is used for specifying class constraints and it also encom-
passes subclasses of the matching classes. The name constraint is used for spec-
ifying a specific object on which to pattern-match. Constraints are also used in
slots/multislots in order to restrict certain type of values. Both in fact and ob-
ject patterns, it is possible to use variables in order to be matched with certain
values. A single-value variable is denoted as ?x, whereas a multivalue variable is
denoted as $?x. An example rule that prints all the objects of the class Person
is presented below.

1 http://clipsrules.sourceforge.net/

http://clipsrules.sourceforge.net/

SWRL2COOL: Object-Oriented Transformation of SWRL in CLIPS 51

(defrule test-rule2

(object (is-a Person) (name ?x))

=> (printout t ?x crlf))

3 Transformation Procedure

SWRL2COOL is based on the XML syntax of SWRL and its main functionality
is to transform SWRL rules into the COOL rule language of CLIPS. Currently,
the transformed rules are used in the O-DEVICE reasoner [4] in order to allow
the definition of custom production rule programs on top of ontologies.

The transformation procedure takes place in two phases (Fig. 1). In the first
phase the rules which are written in SWRL are being processed by an XSLT
file named swrl2cool.xsl. The procedure produces a file which represents the
rules in an intermediate format, where SWRL constructs are transformed into
CLIPS format, but properties are not yet encapsulated into object patterns. In
the second phase this file is given as input to the main SWRL2COOL application
(a java program), which produces the final file with the COOL rules. In parallel,
the ontology classes and instances are transformed with O-DEVICE into COOL
classes and objects. Finally, the two transformed pieces of knowledge (rules
and ontology) are joined together to produce the object-oriented rule-based
application.

OWL
Ontology

SWRL
Rules

Classes &
Instances

swrl2cool.xsl

XSLT
Processor

O-DEVICE

Intermediate
Rule form SWRL2COOL

COOL Classes
& Objects

CLIPS
Rules

Object-Oriented Rule-based
Application

Fig. 1. The transformation procedure

3.1 XSLT Transformations

The SWRL rules have two parts: the body and the head. In most of the cases,
the constructs of SWRL correspond to different constructs in COOL depending
on whether they are in the head or the body of the rule. In order to handle these
two cases, the XSLT transformation procedure is based on the use of modes in
the xsl:template and xsl:apply-templates expressions. The modes allow an
element to be processed many times, each time producing a different output. An
xsl:apply-templates element with a mode argument, is applied to a template
rule with a matching mode. The above are being used in this stylesheet as follows:

52 E. Rigas, G. Meditskos, and N. Bassiliades

<xsl:template match="ruleml:imp">

<xsl:apply-templates select="ruleml:_body" mode="body" />

=>

<xsl:apply-templates select="ruleml:_head" mode="head" />

end-of-rule

</xsl:template>

The "=>" symbol gets before the head of the rule in order to line-up with the
CLIPS syntax and the phrase "end-of-rule" gets at the end of each rule in
order to be a point of reference considering the line where one rule ends and
another begins. This is used during the second phase of the transformation.

swrl:classAtom. The classAtom consists of a description, which is usually the
name of a class and the name of a variable. When a classAtom is in the body
of a rule then the description is matched in COOL as object is-a "name of

class" and the variable as name "name of variable". Essentially, we refer to
an instance of a class that has already been set earlier. On the other hand, when
a classAtom is in the head of a rule then the variable is matched in COOL
as make-instance <name of variable> and the description as of <name of

class>. The head of the rules contains actions that have to be performed in
relation to the elements that exist in the body of the rule. For this reason when
there is a classAtom in the head of a rule, then we create a new instance of a
class that was set before.

<xsl:template match="swrlx:classAtom" mode="body" >

object (is-a <xsl:value-of select="owlx:Class/@owlx:name" />)

(name <xsl:apply-templates />)

</xsl:template>

<xsl:template match="swrlx:classAtom" mode="head" >

(make-instance <xsl:apply-templates /> of <xsl:value-of

select="owlx:Class/@owlx:name" />)

</xsl:template>

swrl:individualPropertyAtom. The individualPropertyAtom consists of
the name of a property and the names of two variables. When it is in the body
of the rule, the property must be matched to an object that has been defined
earlier inside the rule. Thus, the first variable is the name of the object and the
second variable is the value of the property. For example:

<swrlx:individualPropertyAtom swrlx:property="property_name">

<ruleml:var>var1</ruleml:var>

<ruleml:var>var2</ruleml:var>

</swrlx:individualPropertyAtom>

The output of the processing begins with the qualifier "property", followed
by the "object name" of the object that the second property refers to. The
qualifiers are used in the second phase of the transformation process, where
COOL rules take their final format.

SWRL2COOL: Object-Oriented Transformation of SWRL in CLIPS 53

<xsl:template match="swrlx:individualPropertyAtom" mode="body">

property

(object (name<xsl:apply-templates select="ruleml:var[1]"/>)

(<xsl:value-of select="@swrlx:property"/>

<xsl:apply-templates select="ruleml:var[2]"/>)

</xsl:template>

When an individualPropertyAtom is in the head of the rule, then the prop-
erty must be matched to an object that has been defined earlier and change its
value.

<xsl:template match="swrlx:individualPropertyAtom" mode="head">

(slot-insert$ <xsl:apply-templates select="ruleml:var[1]"/>

<xsl:value-of select="@swrlx:property" />

1 <xsl:apply-templates select="ruleml:var[2]"/>)

</xsl:template>

The above stylesheet makes use of the (slot-insert$ <ins> <p> <i> <v>)

function of CLIPS that inserts the value v in the slot p of the object ins at
position i.

swrlx:datavaluedPropertyAtom. The datavaluedPropertyAtom consists
of the name of the property, a name of a variable and a name of a constant.
The datavaluedPropertyAtoms are being processed like the
individualPropertyAtoms with one difference. The property takes as a con-
stant value and not a variable.

<xsl:template match="swrlx:datavaluedPropertyAtom" mode="body">

property

(object (name<xsl:apply-templates select="ruleml:var[1]"/>)

(<xsl:value-of select="@swrlx:property" />

<xsl:value-of select="owlx:DataValue" />)

</xsl:template>

<xsl:template match="swrlx:datavaluedPropertyAtom" mode="head">

(slot-insert$ <xsl:apply-templates select="ruleml:var[1]"/>

<xsl:value-of select="@swrlx:property" />

1 <xsl:value-of select="owlx:DataValue" />)

</xsl:template>

swrlx:builtInAtom. SWRL supports a large amount of built in functions, for
comparisons, mathematical expressions, Booleans, strings, date, time and lists.
Currently, SWRL2COOL handles only built in functions for comparisons and
mathematical expressions and it is assumed that the body of the rule contains
functions for comparisons and the head functions for mathematical expressions.
The functions for comparisons are treated with the test construct of CLIPS
and the functions for mathematical expressions are treated with the bind CLIPS
function, to compute a new value that must be added or updated.

54 E. Rigas, G. Meditskos, and N. Bassiliades

<xsl:template match="swrlx:builtinAtom" mode="body">

test (<xsl:value-of select="@swrlx:builtin" />

<xsl:apply-templates select="ruleml:var[1] "/>

<xsl:apply-templates select="ruleml:var[2]|owlx:DataValue"/>)

</xsl:template>

<xsl:template match="swrlx:builtinAtom" mode="head">

bind <xsl:apply-templates select="ruleml:var[1]"/>

(<xsl:value-of select="@swrlx:builtin" />

<xsl:apply-templates select="ruleml:var[2]"/>

<xsl:apply-templates select="ruleml:var[3]|owlx:DataValue[1]"/>)

</xsl:template>

3.2 Transformation Example

We now present a transformation example of a complete SWRL rule (below in
presentation syntax) and the results of all transformation phases.

Car(?c), tank-capacity(?c,?tc), fuel-consumption(?c,?fc)

-> swrlb:divide(?a,?tc,?fc), autonomy(?c,?a)

SWRL Rule - XML syntax:

<ruleml:imp>

<ruleml:_body>

<swrlx:classAtom>

<owlx:Class owlx:name="car"/> <ruleml:var>c</ruleml:var>

</swrlx:classAtom>

<swrlx:individualPropertyAtom swrlx:property="tank-capacity">

<ruleml:var>c</ruleml:var> <ruleml:var>tc</ruleml:var>

</swrlx:individualPropertyAtom>

<swrlx:individualPropertyAtom swrlx:property="fuel-consumption">

<ruleml:var>c</ruleml:var> <ruleml:var>fc</ruleml:var>

</swrlx:individualPropertyAtom>

</ruleml:_body>

<ruleml:_head>

<swrlx:builtinAtom swrlx:builtin="divide">

<ruleml:var>a</ruleml:var>

<ruleml:var>tc</ruleml:var> <ruleml:var>fc</ruleml:var>

</swrlx:builtinAtom>

<swrlx:individualPropertyAtom swrlx:property="autonomy">

<ruleml:var>c</ruleml:var> <ruleml:var>a</ruleml:var>

</swrlx:individualPropertyAtom>

</ruleml:_head>

</ruleml:imp>

SWRL2COOL: Object-Oriented Transformation of SWRL in CLIPS 55

Intermediate rule format:

object (is-a car) (name ?c)

property (object (name ?c) (tank-capacity ?tc)

property (object (name ?c) (fuel-consumption ?fc)

=>

bind ?a (divide ?tc ?fc)

(slot-insert$?c autonomy 1 ?a)

end-of-rule

Final CLIPS rule:

(defrule r2

(object (is-a car) (name ?c)

(tank-capacity $? ?tc $?) (fuel-consumption $? ?fc $?))

=>

(bind ?a (/ ?tc ?fc))

(slot-insert$?c autonomy 1 ?a))

4 Related Work

A lot of approaches have been proposed towards the development of frameworks
able to execute SWRL rules on top of OWL ontologies in native rule engines.
Many of them use the Jess2 rule engine and follow a fact-based approach, where
both rules and OWL ontologies are mapped on fact-based Jess constructs, in
contrast to our approach that follows an object-oriented implementation using
the COOL language of CLIPS. To the best of our knowledge, this is the first
effort that enables the CLIPS rule engine to import and execute SWRL rules in
an object-oriented manner. In the following, we briefly present existing SWRL
transformation approaches.

SWRLJessTab [6] is a plugin in Protege that allows the execution of SWRL
rules using the Jess rule engine. The interaction between OWL and the Jess rule
engine is user-driven. The user controls when OWL knowledge and SWRL rules
are transferred to Jess, when inference is performed using those knowledge and
rules, and when the resulting Jess facts are transferred back to Protege as OWL
knowledge. SWRLJessTab actually maps SWRL rules on fact-based Jess rules
that match facts, in contrast to our approach that SWRL rules are transformed
into object-oriented rules and match objects in CLIPS.

In [7] the authors reuse the SWRLJessTab along with SweetRules3 and other
standard tools [8] in order to transform an extended version of SWRL suitable in
teaching scenarios into Jess fact-based rules. This is also a fact-based approach
where the knowledge and the rules are represented in terms of Jess facts.

A similar approach to SWRLJessTab is the OWL2Jess [9] tool that enables
the transformation of OWL ontologies to Jess and thus enables OWL models to

2 http://herzberg.ca.sandia.gov/jess
3 http://sweetrules.projects.semwebcentral.org/

http://herzberg.ca.sandia.gov/jess
http://sweetrules.projects.semwebcentral.org/

56 E. Rigas, G. Meditskos, and N. Bassiliades

be extended by means of rules. Facts are derived from an initial OWL file by
one XSLT stylesheet, while the RDF(S) and OWL Semantics are pre-defined as
Jess rules.

5 Conclusions

In this paper, we presented an object-oriented transformation of SWRL rules
into the COOL language of CLIPS. The approach is based on XSLT transfor-
mations over the XML syntax of SWRL. In that way, we enable the CLIPS
production rule engine to import and execute SWRL rules over object-oriented
COOL models.

Currently, we use our tool in the O-DEVICE reasoner that processes and maps
OWL ontologies on the COOL model of CLIPS. In that way, SWRL rules can
be combined with classes and instances from an OWL ontology that has been
transformed into classes and instances in the COOLmodel using the O-DEVICE.
In the future, we plan to add support for more built-in SWRL constructs and
to implement SWRL2COOL as a Protege plugin.

References

1. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A semantic web rule language combining OWL and RuleML. W3C member
submission, World Wide Web Consortium

2. Motik, B.: KAON2 - scalable reasoning over ontologies with large data sets. ERCIM
News 2008(72) (2008)

3. Sirina, E., Parsia, B., Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-
DL reasoner. Journal of Web Semantics 5(2), 51–53 (2007)

4. Meditskos, G., Bassiliades, N.: A rule-based object-oriented OWL reasoner. IEEE
Transactions on Knowledge and Data Engineering 20(3), 397–410 (2008)

5. Settas, D., Meditskos, G., Stamelos, I., Bassiliades, N.: SPARSE: A symptom-based
antipattern retrieval knowledge-based system using semantic web technologies. Ex-
pert Syst. Appl. 38(6), 7633–7646 (2011)

6. Golbreich, C., Imai, A.: Combining SWRL rules and OWL ontologies with Protege
OWL plugin, Jess, and Racer. In: 7th International Protege Conference (2004)

7. Wang, E., Kim, Y.S.: Using SWRL for ITS through keyword extensions and rewrite
meta-rules. In: 5th Int’l Workshop on Ontologies and Semantic Web for E-Learning,
SWEL@AIED 2007 (2007)

8. Wang, E., Kim, Y.S.: A teaching strategies engine using translation from SWRL to
Jess. In: Intelligent Tutoring Systems 2006, pp. 51–60 (2006)

9. Mei, J., Bontas, E.P., Lin, Z.: OWL2Jess: A Transformational Implementation of
the OWL Semantics. In: Chen, G., Pan, Y., Guo, M., Lu, J. (eds.) ISPA-WS 2005.
LNCS, vol. 3759, pp. 599–608. Springer, Heidelberg (2005)

	SWRL2COOL: Object-Oriented Transformation
of SWRL in the CLIPS Production Rule Engine
	Introduction
	The CLIPS Production Rule Engine
	COOL Production Rules in CLIPS

	Transformation Procedure
	XSLT Transformations
	swrl:classAtom.
	swrl:individualPropertyAtom.
	swrlx:datavaluedPropertyAtom.
	swrlx:builtInAtom.

	Transformation Example

	Related Work
	Conclusions
	References

