Parallelism, Localization and Chain Gradient Tuning
Combinations for Fast Scalable Probabilistic Neural
Networks in Data Mining Applications

Yiannis Kokkinos and Konstantinos Margaritis

Parallel and Distributed Processing Laboratory, Department of Applied Informatics,
University of Macedonia, 156 Egnatia str., P.O. Box 1591, 54006, Thessaloniki, Greece

Abstract. This work investigates the scalability of Probabilistic Neural Net-
works via parallelization and localization, and a chain gradient tuning. Since
PNN model is inherently parallel three common parallel approaches are studied
here, namely data parallel, neuron parallel and pipelining. Localization me-
thods via clustering algorithms are utilized to reduce the hidden layer size of
PNNSs. A problem of localization may be present in the case of multi-class data.
In this paper we propose two simple fast approximate solutions. The first is us-
ing sigma smoothing parameters obtained from the parallel PNN initial training
directly to clustering. In this case a substantial reduction of neurons is achieved
without significant loss of recognition accuracy. The second is an effort for an
additional tuning. Via confidence outputs we employ a chain training approach
to tune for the best possible PNN architecture.

Keywords: Parallel processing, Probabilistic Neural networks, data mining.

1 Introduction

Data mining tries to unlock and exploit the hidden patterns in databases [1]. Probabil-
istic Neural Networks (PNN) [2] are known intelligence tools for classification that
derive knowledge directly from data and represent it in the form of simple well under-
stood Bayesian models, which are most suitable for data mining applications that also
need confidence levels. Bayesian classifier methods represent a powerful class of
techniques to data mining, as they can in a strict mathematical sense to work under
uncertainty. However the PNN hidden neuron size is usually of the order of the whole
dataset size and the PNN operation is slow and demanding in memory and CPU re-
sources. Thus for large scale systems and datasets the PNN usage is hindered. This
encourages more research into the scalability of these techniques. Hence during the
last five years, various works have been presented for mapping Probabilistic Neural
Network in parallel processing systems, such as parallel PNN in Beowulf Clusters [3],
in Grid mining with Map/Reduce [4], and in Graphic Processing Units [5]. All these
works mainly focus on splitting the data-neuron matrix to speed up the slow execution

* Corresponding author.

L. Maglogiannis, V. Plagianakos, and L. Vlahavas (Eds.): SETN 2012, LNAI 7297, pp. 41-f8] 2012.
© Springer-Verlag Berlin Heidelberg 2012



42 Y. Kokkinos and K. Margaritis

times due to PNNs quadratic computational complexity, and in this way demonstrate
that PNNs can be efficiently parallelized.

Yet the quadratic complexity of the original problem remains since Parallelism is
only one path towards speedups. While run time can be reduced by parallelism, the
computational complexity can be reduced by localization techniques which need
fewer locally important neurons, to sum up for the probability distribution functions
estimation. Use fewer units in PNN pattern layer but try to place them at optimal
places. Like previous works clustering algorithms are also considered here to reduce
the hidden layer size of PNNs.

A problem of such localization may be present in the case of multi-class data. In
principle there exist no unsupervised algorithm that can sample by clustering the data
points inside each class and select the best possible representative center points from
every class such as a global accuracy criterion is simultaneously been satisfied. This
problem is an extension of the well known k-centers problem and is NP hard [19]. In
this paper we propose two simple fast approximate solutions for the above mentioned
problem. The first is using sigma smoothing parameters obtained from the parallel
PNN initial training directly to clustering. In this way a substantial reduction of neu-
rons is achieved with negligible losses of classification performance. The second is an
effort for an additional tuning. Via confidence outputs we employ a chain training ap-
proach to tune and test for the best possible PNN architecture. Details and experimen-
tal results from all methods are presented next.

2 PNN Architecture and Parallelization Mappings

The Probabilistic Neural Network [2-5] has four layers, namely input, pattern, sum-
mation and output. There are M classes in the output layer and each has N, pattern
neurons in the pattern layer, and a single G,,(), summation neuron in the summation
layer. The d input layer neurons are the data features. The pattern layer is where train
patterns are loaded and divided in M groups, one for each class. For an unknown
sample X, the pattern neuron i of group m compute a Gaussian kernel of the form:

F

i (X) exp(— HX -X

1 2 N

(2”0_2 )d/Z m 2o )) 0
where X, ; is the center of the Parzen kernel and sigma ¢ is the smoothing parameter
(the width), that defines the range of each receptive field. The summation layer com-
putes the conditional density functions by sum up the previous densities in
Gn(X)=(1/N,)ZF,,;(X), and finally the output layer classifies the unknown X in class
C,, that have maximum G,,(X)-h(C,,), where h(C,,) is the class prior. The conditional
probability for class C,,, can give also the confidence levels of this class and it is
Conf(C1X)= G,(X)-h(C)/( ZG(X)-'h(C,,)). A PNN with a single sigma parameter
called homoscedastic, while the multi-sigma PNN called heteroscedastic. The norma-
lization factor in the denominator of confidence (the prior of X) is the sum of all nu-

merators for all categories C,.



Parallelism, Localization and Chain Gradient Tuning Combinations 43

The main disadvantage of PNN network is that it has one hidden neuron for each
training sample and thus requires more computational resources during execution than
other models. On a serial machine, O(n) cost is required to classify a single input.

Exploitation of parallel mappings in Neural Networks can be achieved in many dif-
ferent levels from coarse grained to fine grained. The first, the session parallelism
level (also called inter model parallelism in parallel data mining) places a different
training model session to each processor. The next, the data parallelism, simultane-
ously learns in different training examples within the same train model session. The
layer parallelism use concurrent computation for different layers. The neuron parallel-
ism, use the same model and split the neurons to different processors. These last three
levels also belong to intra model parallelism. A taxonomy review is in [6] and general
guidelines on breaking any NN structure are in [7]. If the algorithm permits it, one can
minimize point-to-point communication by pipelining the neuron calculations. Be-
yond selecting a representative training sample, PNN training phase is essentially a
model selection procedure for the definition of sigma parameters and pattern neurons.

In PNN data Parallelism in Master/Worker architecture the Master node sends to
all Workers the same copy of Neural Network, after that Master partition the data set
and send a different partition to a different processor. Then for each epoch (a pass
through all local data) each Worker independently process its local test set, exchanges
its weight updates with other nodes, applies the weight updates to its copy of Neural
Network, and computes local error rate and determines if local training is complete.
The Search for best sigma parameters can be done by several repetitions of an epoch.
This approach ensures that all parameter values required during the training phase, are
locally available, decreasing the communication between the nodes and the synchro-
nization of the parallel algorithm. The synchronization appears in the end of an epoch.

In PNN neuron parallelism the neurons are distributed in the processors. An algo-
rithm of neuron parallelism in Master/Worker architecture is the following: 1) Master
split data set into train and test (uses stratified sampling) and partition and distribute
train set instances across workers to set up the local distributed pattern neurons. 2)
Each Worker uses its local train set for the local pattern neurons. 3) Master broadcast
the same train parameters to all workers. 4) For each test set instance Master sequen-
tially Broadcast an instance X (or a batch B) of test set data to all workers, all workers
compute local distances, kernels and send back partial sums for each class, Master
reduce all partial sums for each class from all workers, and find the class of X.

In the PNN pipelined neuron parallelism, the communication time between proces-
sors is minimised to point-to-point, allowing each one node to receive-send messages
with only his 2 neighbours (previous - next). Each machine keeps a partition of neu-
rons, as in the PNN Neuron Parallel. In batches B, the evaluation points are loaded in
the first node. For each batch, is calculated a list of partial sums of the class condi-
tional probabilities for each class. The list and batch together are propagated to the
next node in the pipeline that makes the same operation on them. A label of class is
finally set in the ending node. This requires only point-to-point communication.

Model selection methods like leave-one-out cross-validation are often used in PNN
training and evaluation for selecting the best sigma parameters. This is the one ap-
proach we use in the parallel implementations.



44 Y. Kokkinos and K. Margaritis

3 PNN Localization Problem and k-Centers Sampling

While PNN run time can be reduced by parallelism, the computational complexity can
be reduced by localization techniques which need fewer locally important kernels, or
neurons, to sum up for the probability density functions estimation. Localization tries
to obey the parsimonious principle. The smaller and simpler is the better. All localiza-
tion techniques require some additional regional information, specifically a list of k
local points which are close to any given point x. Various clustering or sampling ap-
proaches are proposed to reduce neurons [8] for PNNs like LVQ in [9], k-means clus-
tering [10], hierarchical clustering [11], the DDA algorithm in [12], Gaussian
ARTMAP in [13], global k-means with Expectation-Maximization in [14] and k-
medoids in [15]. After finding “representative” vectors for each class every sigma
parameter depends on the clusters. The modified density equation for the PNN is:

m _ my\2
Flrle,) = —a— Y M mexp{— ¢ = Xy)” } @
Zklel:” ) Hi=1 Oi )

where N" is the number of initial samples that covered from the kth cluster in class

m

m, while o;; and X are the smoothing parameter and the mean (or the medoid) in
ith dimension for the cluster kth in class m, respectively. However the cluster based
sigma parameters estimation tends to deteriorate the classification performance and
optimization of sigma parameters, as well as of the network weights, is necessary.

In this work we compare many existing samplers like Affinity Propagation (AP)
[16], k-Medoids (KM) [1], Subtractive Clustering (SC) [17] and Farthest Point clus-
tering (FPC) [18] to sample important points inside classes.

A problem of such localization may be evident in the case of multi-class data. An
efficient algorithm must select the best samples from a class and doing this with re-
spect to the best samples from the other classes. Yet this problem is a multi-class
extension of the well known k-centers problem or k median objective and is NP hard
[19]. In this paper we propose two simple fast approximate solutions to work around
the problem. The first we will demonstrate is using the sigma smoothing parameters
obtained from the parallel PNN initial training directly to Subtractive Clustering. In
this way a substantial reduction is achieved without significant loss of recognition
accuracy. The second is an effort for chain training for an additional tuning.

Affinity Propagation and k-Medoids are accurate but very slow and not incre-
mental in the sense that the next cluster point is not dependent than the previous. They
are included for comparison only. We parallelise Subtractive clustering and Farthest
Point clustering (FPC) as they are the only incremental, and fast and more suitable for
large scaling. Extensive details will be presented elsewhere. Note that FPC needs to
predefine the number of centers while Subtractive Clustering not. Nevertheless, to
select sufficiently the best centers SC requires a training phase to find a suitable
sigma parameter. Fortunately in this work we obtain such a sigma parameter already
from the previously supervised parallel PNN training and propose here to use it.



Parallelism, Localization and Chain Gradient Tuning Combinations 45

4 Tuning by Chain Gradient Training Paradigm

Using sigmas from PNN training in the SC clustering procedure as proposed in the
previous chapter may be efficient enough. Though in the localized version of PNN
there is no generic method for selecting the best number of representative points from
every class population in all cases. If needed, chain gradient training approach can
provide additional tuning to test for the best possible tuned PNN architecture. First by
using incremental clustering algorithms like subtractive clustering one can potentially
sample most possible representative points from every class in an ordered fashion.
Then the method gradually reduces the neuron size, equally from every class, and
monitors an average ‘gradient’ of confidence levels from a whole inter-connected
chain of network solutions. In localized PNN case this tuning is not meant for classi-
fication performance improvement, but rather for an additional reduction of neuron
size without affecting its current performance.

Recall now that PNN is a data model and a data descriptor and also produce confi-
dence levels. Let us suppose that a chain of two PNN instances namely A and B dif-
ferent only in the number of hidden neurons and a evaluation set ES is present.

Initially PNN(A) classifies its own A points to produce A-A confidence measure.
PNN(B) classifies its own B points to produce B-B measure. Then PNN(A) classifies
B points to produce A-B measure and PNN(B) classifies A points to produce B-A
measure. In the third step PNN(A) classifies evaluation set ES to produce A-ES
measure and PNN(B) classifies ES to produce B-ES measure. Finally, ES set classi-
fies A and B patterns. The first two are internal measures, the next two are local and
the last four are external. A schematic representation is given in fig. 1.

Fig. 1. A chain of two Probabilistic Neural Networks A and B different in the number of pat-
terns, inter-connected with each other via confidence-based measures, indicated by arrows

One can have a sequence of several PNNs different in the number k of hidden neu-
rons only. This chain training tuning scheme must be robust against oscillating local
minima. The representative sampled points from every class, in an ordered fashion,
are loaded to the hidden layer. If the hidden neuron size is gradually increased then
we expect the chain global measure to soon reach a plateau. Confidence levels pro-
duced by the output neurons must progressively be increased for correctly classified
patterns and be decreased for the falsely classified patterns. An efficient measure that
can be used, is the (1+ sum of confidences for falsely classified patterns) / (1+ sum of
confidences for correctly classified patterns) ratio. The next paragraphs present some
experimental results.



46 Y. Kokkinos and K. Margaritis

5 Experimental Results

The experimental results for PNN data parallel, PNN neuron parallel and PNN neuron
pipelined simulations are determined for 1..2..4.. 6..8 .. 10.. 12.. 14.. 16..24 machines.
The speedup is S / P, where S the sequential run time in a single processor and P the
time that simulates the network in parallel. All PNN Neural Network implementations
are written in C using MPI library. PNN-CV train by cross-validation and PNN-SC
with Subtractive Clustering are included.

PNN Data Parallel speedup 12 PNN Neuron Parallel speedup
A B
10 10
8 1 81
6 6
4 - 4 -
—e— Points 100.000 —e— Points 100.000 B=500|
] . i —=— Points 50.000 B=500
2 ~® Points 50.000 2 / —— Points 10.000 B=500
0 L~ Points 10.000 0 % Points 10.000 B=20
0 2 4 6 8 10 12 0 2 4 6 8 10 12
number of processors number of processors

Fig. 2. (A) PNN Data Parallel, speed ups for data sizes of 10.000, 50.000 and 100.000 points,
(B) PNN Neuron Parallel speedups respectively for two batch sizes B

In fig.2A for PNN data parallel with 10.000 points a linear speedup is observed up
to 8 processors and when the size of problem is increased to 50.000 and 100.000
points we observe linear speedup up to 12 processors. In Fig. 2B for neuron parallel-
ism results it appears a sub-linear speedup (9/12) up to 12 processors. This divergence
is improved evidently when the size of problem is increased to 50.000 and 100.000
points and when the number of points in the batch increasing from 20 to 500.

o4 PNN Pipelined speedup

22

20

18

16

14

12

10
8 1 -
6 —e— Points 100.000 B=500)
4] —=— Points 50.000 B=500

—e— Points 10.000 B=500
g ] —+— Points 10.000 B=20
0246 81012141618202224
number of processors

Fig. 3. (A) PNN neuron Pipelined speedups for two sets of 10.000, 50.000 and 100.000 points
respectively for two batch sizes B, where one observes an impressive linear acceleration up to
24 processors. (B) The parallel programming model Master/Worker + Pipeline.

It is clearly show in fig. 3A for Pipelined calculations of 50.000 and 100.000 points
an impressive linear speedup (24/24) that it is achieved up to all 24 processors we
have tried. Results of PNN neuron pipelined are the best of all the previous methods.



Parallelism, Localization and Chain Gradient Tuning Combinations 47

For each network we compute error on the validation set. The network with the
highest sum of confidences is then picked as one with the best generalization ability.

As standard we use several benchmark datasets downloaded from UCI ML Reposi-
tory [20]. In table 1 average classification results are presented after 20 runs (10 with
50% train set and 10 with 80% train set) of each algorithm. The 1-NN is the one
Nearest Neighbour rule, parallel PNN-CV is standard PNN with cross-validation,
parallel PNN-FPC is localized PNN with Farthest point clustering, in where S means
a single-sigma parameter used in equation 2, M means multi-sigma as a max distance
from center and V means using variances and equation 2. PNN-AP is localized PNN
with Affinity Propagation, PNN-KM is PNN with k-medoids. The best results are
obtained with PNN-SC localized via the parallel Subtractive Clustering algorithm in
which we use the same single sigma parameter founded by PNN-CV.

Table 1. Classification rates on the cross-validated test set for several benchmark datasets

Database | size Clas- | 1- PNN-CV PNN-FPC PNN | PNN | PNN
ses NN -AP | -KM | -SC
S M|V |S S S
Iris 150 3 96 97 (6=0.10) 93 195192 |96 96 97
Wine 178 3 94 95 (6=0.22) 89 193193 |93 93 95
Wisconsin| 683 2 97.5 | 98.5 (6=0.25) 98 | 98 | 98 | 98 98 98.5
Yeast 1484 | 10 51 56 (0=0.18) 45 | 25 | 25 | 47 49 55
Diabetes | 768 2 70 76 (0=0.25) 74 | 63 | 63 | 74 74 75

Sampling by AP or KM is very slow with a cost O(n*2 logn) for both and difficult
to parallelise, but are included for comparison only. We parallelise efficiently PNN-
SC and PNN-FPC. Only PNN-SC recovers the original performance, by using sigma
parameter from previous PNN-CV in it. At most 10% points were extracted from each
dataset. We observe that AP on average has similar results. Thus this localized ap-
proach produce at least 10 times faster PNN, in addition to 24 times speed up ob-
tained from the 24 processors pipelined.

6 Conclusions

The first goal of this work is to speed up PNN. Using 24 processors the PNN training
with cross validation and subtractive clustering approaches can impressively be speed
up by 24 times. The next goal is to answer the question of preserving the sigma pa-
rameter founded by PNN cross-validation how many and which points can be omitted
from the pattern layer without significant loss in the PNN performance. Using the
sigmas found from the standard PNN directly on the Subtractive Clustering inside
classes one can select most representative points and produce a localized PNN with
small pattern neuron size and excellent performance that is 10 times even faster than
the original version. If needed, additional tuning can be done by the chain gradient to
test for the best possible PNN architecture. This approach could also be used in the
training phase of other reduced nearest neighbour types of classifiers.



48

Y. Kokkinos and K. Margaritis

References

Dunham, M.H.: Data mining introductory and advanced topics. Prentice Hall (2004)

2. Specht, D.: Probabilistic neural networks. Neural Networks 3, 109-118 (1990)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Secretan, J., Georgiopoulos, M., Maidhof, 1., Shibly, P., Hecker, J.: Methods for Paralleliz-
ing the Probabilistic Neural Network on a Beowulf Cluster Computer. In: International
Joint Conference on Neural Networks, IJCNN 2006, Vancouver, pp. 2378-2385 (2006)
Cardona, K., Secretan, J., Georgiopoulos, M., Anagnostopoulos, G.: A Grid Based System
for Data Mining Using MapReduce. Technical Report, TR-2007-02 (2007)

Bastke, S., Deml, M., Schmidt, S.: Combining statistical network data, probabilistic neural
networks and the computational power of GPUs for anomaly detection in computer net-
works. In: 19th International Conference on Automated Planning and Scheduling, Work-
shop on Intelligent Security (SecArt 2009), Thessaloniki, Greece (2009)

Serbedzija, N.: Simulating Artificial Neural Networks on Parallel Architectures. IEEE
Computer, Special Issue on Neural Computing 29(3), 56-63 (1996)

Pethick, M., Liddle, M., Werstein, P., Huang, Z.: Parallelization of a backpropagation
neural network on a cluster computer. In: 15th IASTED International Conference on Paral-
lel and Distributed Computing and Systems, CA, USA, November 3-5, pp. 574-582
(2003)

Specht, D.F.: Enhancements to the probabilistic neural networks. In: Proc. IEEE Int. Joint
Conf. Neural Networks, Baltimore, MD, pp. 761-768 (1992)

Burrascano, P.: Learning vector quantization for the probabilistic neural network. IEEE
Transactions on Neural Networks 2, 458-461 (1991)

Traven, H.G.C.: A neural network approach to statistical pattern classification by “semi-
parametric” estimation of probability density functions. IEEE Transactions on Neural
Networks 2, 366-377 (1991)

Babich, G.A., Camps, O.I.: Weighted Parzen windows for pattern classification. IEEE
Trans. Pattern Anal. Mach. Intell. 18(5), 567-570 (1996)

Berthold, M., Diamond, J.: Constructive training of probabilistic neural networks. Neuro-
computing 19, 167-183 (1998)

Zhong, M., et al.: Gap-Based Estimation: Choosing the Smoothing Parameters for Proba-
bilistic and General Regression Neural Networks. Neural Computation 19, 2840-2864
(2007)

Chang, R.K.Y., Loo, C.K., Rao, M.V.C.: A Global k-means Approach for Autonomous
Cluster Initialization of Probabilistic Neural Network. Informatica 32, 219-225 (2008)
Georgiou, V.L., Alevizos, P.D., Vrahatis, M.N.: Novel approaches to probabilistic neural
networks through bagging and evolutionary estimating of prior probabilities. Neural
Processing Letters 27, 153—-162 (2008)

Frey, B.J., Dueck, D.: Clustering by passing messages between data points.
Science 315(5814), 972-976 (2007)

Sarimveis, H., Alexandridis, A., Bafas, G.: A fast training algorithm for RBF networks
based on subtractive clustering. Neurocomputing, 501-505 (2003)

Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science 38(2-3), 293-306 (1985)

Bern, M., Eppstein, D.: Approximation Algorithms for Geometric Problems. In: Approxi-
mation algorithms for NP-hard problems, pp. 296-345. PWS Publishing (1997)

Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, Ir-
vine (2010), http://archive.ics.uci.edu/ml



	Parallelism, Localization and Chain Gradient Tuning
Combinations for Fast Scalable Probabilistic Neural Networks in Data Mining Applications
	Introduction
	PNN Architecture and Parallelization Mappings
	PNN Localization Problem and k-Centers Sampling
	Tuning by Chain Gradient Training Paradigm
	Experimental Results
	Conclusions
	References




