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Abstract. Consumers often form complex social networks based on a multitude 
of different relations and interactions. By virtue of these interactions, they 
influence each other’s decisions in adopting products or behaviors. Therefore, it 
is essential for companies to identify influential consumers to target, in the 
hopes that influencing them will lead to a large cascade of further 
recommendations. Several studies, based on approximation algorithms and 
assume that the objective function is monotonic and submodular, have been 
addressed this issue of viral marketing. However, there is a complex and broad 
family of diffusion models in competitive environment, and the properties of 
monotonic and submodular may not be upheld. Therefore, in this research, we 
borrowed from swarm intelligence-specifically the ant colony optimization 
algorithm-to address the competitive influence-maximization problem. The 
proposed approaches were evaluated using a coauthorship data set from the 
arXiv e-print (http://www.arxiv.org), and the obtained experimental results 
demonstrated that our approaches outperform two well-known benchmark 
heuristics.  
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1 Introduction 

Consumers often form complex social networks based on a multitude of different 
relations and interactions. By virtue of these interactions, they influence each other’s 
decisions in adopting products or behaviors. Therefore, it is essential for companies to 
identify influential consumers to target, in the hopes that influencing them will lead to 
a large cascade of further recommendations. This influence-maximization problem 
can be defined as the following: Given a social network, pick the k most influential 
individuals that will function as the initial adopters of a new product, so as to 
maximize the final number of infected individuals, subject to a specified model of 
influence diffusion. 

Several studies have been addressed this influence-maximization problem. Kempe et 
al. [8] showed that the problem is NP-hard and many underlying diffusion models have 
monotonicity and submodularity properties. Hence, they applied a well-known greedy 
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approximation to solve the problem. Many of the existing approaches for solving the 
influence-maximization problem are based on approximation algorithms and assume 
that the objective function is monotonic and submodular [1] [3] [5] [10] [11]. 

This influence-maximization problem has been extended to introduce a new 
product into a market where competing products exist [4]: Given the competitor’s 
choice of initial adopters of technology B, maximize the spread of technology A by 
choosing a set of initial adopters such that the expected spread of technology A will 
be maximal. As identified by Borodin et al. [2], however, there is a complex and 
broad family of competitive diffusion models, and the properties of monotonic and 
submodular may not be upheld-in which case the greedy approach cannot be used. 

Therefore, in this research, we borrowed from the swarm intelligence-specifically 
the ant colony optimization (ACO) algorithm-to address the competitive influence-
maximization problem. Our proposed approaches do not use the properties of 
monotonicity and submodularity and hence are general approaches. The proposed 
approaches were evaluated using a coauthorship data set from the arXiv e-print 
(http://www.arxiv.org), and the obtained experimental results demonstrated that our 
approaches outperform two well-known benchmark heuristics. 

This paper is organized as follows. Section 2 reviews related studies, and Section 3 
describes the proposed approaches applying the ACO algorithm to the competitive 
influence-maximization problem. The results of evaluating the proposed approaches 
are reported in Section 4, and Section 5 concludes with a summary of this study and a 
discussion of future research directions. 

2 Literature Review 

Motivated by applications to marketing, Domingos and Richardson [6] defined the 
original influence-maximization problem as finding a k-node set that maximizes the 
expected number of convinced nodes at the end of the diffusion process. In [13], 
authors further extended their models to the continuous case. In [8], the authors 
introduced various diffusion models. They showed that determining an optimal seeding 
set is NP-hard, and that a natural greedy strategy yields provable approximation 
guarantees if the diffusion model has the properties of monotonicity and 
submodularity. This line of research was extended by introducing other competitors so 
as to produce the most far-ranging influence [1] [3] [4] [5] [9] [10] [11]. 

As noted by Borodin et al. [2], however, certain diffusion models-particular those 
for investigating competitive influence in social networks-may not be monotonic or 
submodular, and hence the original greedy approach cannot be used. In this research, 
we exploited the search capacity of the ACO algorithm to find an (approximated) 
solution for the competitive influence-maximization problem. ACO, initially 
proposed by Dorigo [7], is a new meta-heuristic developed for composing 
approximated solutions. ACO is inspired by the collective foraging behavior in real 
ant colonies and represents problems as graphs, with solutions being constructed 
within a stochastic iterative process by adding solution components to partial 
solutions. Each individual ant constructs a part of the solution using an artificial 
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pheromone and heuristic information dependent on the problem. ACO has been 
receiving extensive attention due to its successful applications to many NP-hard 
combinatorial optimization problems today [7]. 

3 Proposed Approaches 

In this research, we transform consumer’s connectedness data into a social network 
and represent the network as a directed graph, where each node represents a consumer 
and each edge represents the connectedness between two nodes. In this research, we 
assume that a company has a fixed budget for targeting k consumers who will trigger 
a cascade of influence. We consider the competitive influence-maximization problem 
from the follower’s perspective. Therefore, given a social network SN=(V, E) and a 
set C of initial adopters of a competing product, our goal is to choose a set of nodes S, 
S⊆V-C and |S|=k, that maximizes the spread of our new product. 

The inspiration for ACO is the foraging behavior of real ants [7]. When searching 
for food, ants initially explore the area surrounding their nest in a random manner. As 
soon as an ant finds a food source, it evaluates the quantity and the quality of the food 
and carries some of it back to the nest. During the return trip, the ant deposits a 
chemical pheromone trail on the ground. The quantity of pheromone deposited 
depends on the quantity and quality of the food, and this will guide other ants to the 
food source. Indirect communication between the ants via pheromone trails enables 
them to find the shortest paths between their nest and food sources. This characteristic 
of real ant colonies is exploited in artificial ant colonies, and the ACO algorithm 
utilizes a graph representation to find (approximated) solutions for the target problem. 

In order to utilize graph representation to find (approximated) solutions, in this 
research, we construct a complete digraph to represent the original social network. 
Then, we transform the defined competitive influence-maximization problem into a 
problem of finding a circle of prescribed length so as to maximize the expected spread 
from the set of nodes in the circle. 

The central component of an ACO algorithm is a parameterized probabilistic 
model, which is called the pheromone model. This model is used to probabilistically 
generate solutions to the problem under consideration by assembling them using a 
finite set of solution components. At run-time, ACO algorithms update the pheromone 
values using previously generated solutions. The update aims to concentrate the 
search within regions of the search space containing high-quality solutions. We 
therefore design a basic ACO algorithm as shown in Figure 1, which works as 
follows. The algorithm first initializes all of the pheromone values according to the 
InitializePheromoneValue() function. An iterative process then starts, with the 
GenerateSolution() functionbeing used by all ants to probabilistically construct 
solutions to the problem based on a given pheromone model in each iteration. The 
EvaluateSolution() function is used to evaluate the quality of the constructed solutions 
and some of the solutions are used by the UpdatePheromoneValue() function to 
update the pheromone before the next iteration starts. 
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ACO_InfluenceMaximization() 

{ 

InitializePheromoneValue(); 

While (termination conditions not met) 

{ 

GenerateSolution(); 

EvaluateSolution(); 

UpdatePheromoneValue(); 

} 

Return best solution; 

} 

Fig. 1. The basic ACO algorithm for the competitive influence-maximization problem 

The InitializePheromoneValue() function is used to initialize the pheromone values 
of all nodes of the constructed complete digraph. Initially, each node has a very small 
pheromone value of ε ≠ 0. A possible solution is then created for each node by 
assembling the solution components as follows. Starting node i is added first, and 
each of its first-level neighbors are independently selected with probability p; then its 
second-level neighbors are selected, and so on, until k nodes are assembled in the 
solution. The influence of the solution-which corresponds to the expected number of 
the adopters at the end of the diffusion process-is then evaluated. The influences of 
the top-m solutions are then used as the pheromone and lay down on all component 
nodes of the solution. Different solutions may lay down pheromone values on the 
same nodes, in which case all pheromone values of the same node are summarized. 

Figure 2(a) shows an example of a social network of size 7, and Figure 2(b) shows 
the corresponding complete digraph. Suppose each solution has 3 nodes and that each 
node has an initial pheromone value of 1. The InitializePheromoneValue() function 
creates 7 solutions since there are 7 nodes in the complete digraph. Suppose each 
solution is created and the influence of each solution is evaluated as listed in Table 1. 
Then nodes 3, 4, and 5 will have a pheromone value of 7, and the other nodes all have 
a pheromone value of 1 if only the best solution (i.e., solution 4) lay down its 
pheromone. 

    

(a) A social network   (b) The corresponding complete digraph 

Fig. 2. A social network and its corresponding complete digraph 
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Table 1. An example of pheromone values 

Solution # Nodes Influence 
1 1,2,6 4 
2 2,1,4 5 
3 3,1,2 4 
4 4,3,5 6 
5 5,6,7 3 
6 6,5,7 3 
7 7,6,2 4 

 
Then, in the iterative process, all ants probabilistically construct solutions to the 

problem. In the GenerateSolution() function, each artificial ant generates a complete 
target set by choosing the nodes according to a probabilistic state-transition rule: an 
ant positioned on node r chooses the node s to move to by applying the rule given by 
(1). In (1), q is a random number uniformly distributed in [0,1],  is a parameter (

), and S is a random variable selected according to the probability 

distribution given in (2). In both (1) and (2), τ is the pheromone value and η is the 
heuristic value respectively. 

                     (1) 

                              (2)

 

Also, in this research, we propose using two methods for determining the heuristic 
values of nodes: 

(a) Degree centrality approach: Degree centrality is defined as the number of links 
incident upon a node [12]. Since outdegree is often interpreted as a form of 
gregariousness in a social network, we define the number of links that the node 
directs to others as its degree heuristic value. For the example shown in Figure 
2(a), the degree heuristic of node 4 is 4. 

(b) Distance centrality approach: Distance centrality is another commonly used 
influence measure [12]. The distance centrality of a node is defined as the 
average distance from this node to all of the other nodes in the graph. Again 
considering node 4 in Figure 2(a), its distance centrality is 1.33 since its 
distances from nodes 1, 2, 3, 5, 6, 7 are 2, 1, 1, 1, 1, and 2, respectively. We 
define the distance heuristic value of a node as the number of all nodes minus 
its distance centrality.  

Suppose the pheromone and the heuristic values of all nodes in Figure 2 are updated 
as listed in Table 2. Then suppose that an artificial ant is going to choose a 3-node 
solution, and that three random numbers are generated: 0.6, 0.9, and 0.5. Let α =1, β=1, 
and  = 0.8. For the first node, the ant will select node 4 since this has the largest 

value according to (1); for the second node, since 0.9 > , the ant will select one node 
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according to the probability distribution given in (2); suppose that node 6 is selected in 
this step. Finally, the ant will select node 3 since this node has the largest value among 
the leaving nodes. A set of nodes {4,6,3} is then be generated as the solution. 

Table 2. An example of the pheromone values and the heuristic values of nodes 

Node 1 2 3 4 5 6 7 
Pheromone 
value 

1 1 7 7 7 1 1 

Heuristic 
value 

0 2 3 4 2 2 0 

 
The EvaluateSolution() function is then used to evaluate the performance of each 

solution. To evaluate the performance of a solution, we need to compute the expect 
spread of the solution. Again, we obtain estimates by simulating the diffusion models 
in a random process. Specifically, given a particular diffusion model, we simulate the 
process 1000 times, and compute the average number of influenced nodes for each 
solution. 

Once all ants have found their target sets, the pheromone is updated on all nodes. 
In our system, the global updating rule is implemented according to (3). Similar to the 
InitializePheromoneValue() function, the influences of the top-m solutions are used as 
the pheromone and lay down on all component nodes of the solution and all 
pheromone values of the same node are summarized. The parameter ρ  is the 
evaporation rate and is implemented to avoid the algorithm converging too rapidly 
toward a suboptimal region. 

                          
(3) 

Considering the example in Table 2. Let ρ be 0.9. Suppose there is an artificial ant 
who finds a 3-node solution {3,4,6}, whose expected influence is 5, and the current 
pheromone values of nodes 3, 4, and 6 are 7, 7, and 1 respectively. After updating the 
pheromone, these values will be set as 11.3 ( = 7 * 0.9 + 5), 11.3 ( = 7 * 0.9 + 5 ), and 
5.9 ( = 1 * 0.9 + 5 ) respectively. 

The iterative process of the ACO_InfluenceMaximization() function ends when 
some termination condition is met, such as exceeding the execution time limit or a 
certain ratio of the nodes being influenced. The result, which is the best target set, is 
then returned. 

4 Evaluation 

In this section, we evaluated the efficacy of the proposed approaches by conducting 
experiments on a real world coauthorship data set. The coauthorship network was 
compiled from the complete list of papers on the arXiv e-print (www.arxiv.org) dated 
between January 1, 2006 and December 31, 2010. We constructed a coauthorship 
network as a directed graph in which each node represents an author and each 
directed edge represents a coauthor relationship from the author to another if they 
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have coauthored at least one paper. Each edge ( , ) in the constructed 

coauthorship network is associated with a weight defined as , where  and 

 denote the sets of papers authored by  and  respectively. The coauthorship 

network contained 8,436 nodes representing all of the authors of the included papers 
and 168,712 edges representing the co-author relationships between these authors. 

We compared the performances of the proposed approaches in the competitive 
environment. We used the weight-proportional competitive linear threshold model [2] 
as the diffusion model. In this model, each node v initially chooses a threshold 

, and each directed edge (u,v) is assigned a weight . Given the sets 

 and  of initial adopters, the diffusion process unfolds as follows. In each step 

t, every inactive node v checks the set of edges incoming from its active neighbors. If 
their collective weight exceeds the threshold values, the node becomes active. In that 
case, the node will adopt technology A with probability equal to the ratio between the 
collective weight of edges outgoing from A-active neighbors and the total collective 
weight of edges out going from all active neighbors. It has been proven that the 
competitive model does not have the properties of monotonicity and submodularity 
[2]. We conducted several preliminary experiments to determine the ACO’s 
parameters α, β, ρ for the proposed approaches. The best combination of parameters 
α-β-ρ is 1-2-0.8, and therefore this setting was used in the subsequent experiment.  

We compared the performances of the proposed approaches in the competitive 
case. In this experiment, two benchmarks-the maximum degree approach and the 
minimum distance approach-were used as baselines for our comparisons. In the 
maximum degree approach, we simply pick k nodes in the coauthorship network 
having the k highest degree centrality values. In the minimum distance centrality 
approach, we pick k nodes in the coauthorship network having the k lowest distance 
centrality values. For our approach the two different heuristics described in Section 3 
were used. These values were averaged over 1000 runs. Figure 3 shows the averaged 
spread of the approximated solution generated by our approaches and two 
benchmarks when solution size k was 10, 20, 30, 40, 50, 60, 70, 80, and 90. 

 
Fig. 3. Comparison of the performances of the proposed approaches and benchmarks in 
competitive case 
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It can be seen that our approach using distance heuristic value has the best 
performance, followed by our approach using degree heuristic value, the minimum 
distance centrality approach, and the maximum degree approach in order. The 
performances of both of our two proposed approaches were better than those of the 
two benchmarks. The experimental results demonstrate the effectiveness of the search 
capacity of the ACO algorithm. Also, in the two proposed approaches, the approach 
using distance heuristic value has the highest diffusion values. It indicates that the 
distance centrality heuristic superior than the degree centrality heuristic. 

5 Conclusions 

This research used the search capacity of the ACO algorithm to solve the competitive 
influence-maximization problem. Experiments revealed that the proposed approach 
using distance heuristic value resulted in best performance. Our work could be 
extended in several directions, such as testing the proposed approaches in different 
social networks and using different diffusion models. 
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