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Abstract— Target-oriented human arm trajectories can be
represented as a series of summed minimum-jerk submove-
ments. Under this framework, corrections for errors in reaching
trajectories could be implemented by adding another submove-
ment to the ongoing trajectory. It has been proposed that
a feedback-feedforward error-detection process continuously
evaluates trajectory error, but this process initiates corrections
at discrete points in time. The present study demonstrates
the ability of a feed-forward Artificial Neural Network (ANN)
to learn the function of this error-detection process. Exper-
imentally recorded human target-oriented arm trajectories
were decomposed into submovements. It was assumed that the
parameters of each submovement are known at their onset.
Trained on these parameters, for each of three participants, an
ANN can predict presence of corrections with sensitivity and
specificity > 80%, and can predict their timing with R* > 40%.

I. INTRODUCTION

As able-bodied humans perform target-oriented arm
reaches, feedback or feedforward processes evaluate the
current state of the system relative to the target and modify
the remaining portion of the trajectory to correct for errors
(11, [2].

If these corrections are made at discrete points in time,
then the overall movement can be described as the summa-
tion of a set of discrete submovements. Studies of individuals
recovering from stroke [3], [4] provide support for this
hypothesis. Prior to stroke recovery, reach trajectories are
composed of separate isolated submovements. As individu-
als recover, these submovements progressively overlap and
coalesce.

Submovements have been observed in movements requir-
ing accuracy [5], and are the basis of several models of
human motor control [6], [7], [8], [9], [2].

One popular mathematical representation of a submove-
ment is the minimum-jerk trajectory [10]. It has been shown
that arm reaching movements can be represented as the
sum of minimum-jerk submovements [11], [12]. In addition,
minimum-jerk trajectories can be described using only a
few parameters. This feature is useful when decomposing
a recorded trajectory into its component submovements, a
computationally expensive optimization problem [13].
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The objective of the current study is to investigate whether
the initiation times of the submovements can be predicted us-
ing an Artificial Neural Network (ANN). This study assumes
that target-oriented reaches are composed of minimum-jerk
submovements whose parameters are known when they are
initiated, and that feedback-feedforward processes continu-
ously evaluate error but trigger separate trajectory-correcting
submovements at discrete points in time [14]. Under these
assumptions, it will be demonstrated that the ANN can mimic
the ability of the continuous error evaluation process to de-
termine whether corrections are required. To accomplish this,
three-dimensional arm reach trajectories are decomposed into
minimum-jerk submovements. Then, an ANN is trained to
predict whether a corrective submovement is necessary.

II. METHODS

Three able-bodied right-handed human participants pro-
vided written informed consent in accordance with the
MetroHealth Medical Center Institutional Review Board.
Each participant made a series of right-hand reaching move-
ments from a fixed resting arm position to a series of
distal targets positioned in the reachable workspace. The
distal target was presented on the end of a robotic arm
(HapticMaster, Moog in The Netherlands, Nieuw-Vennep,
The Netherlands). The target was presented as a hollow
sphere octant of radius 25mm, and participants were required
to imagine the rest of the sphere.

The robotic arm was used to position the target sphere
at various locations in the reachable workspace. When the
target was correctly positioned, an audible cue instructed the
participant to reach from the resting position to the target.
Participants were required to reach and hold their fingertip
inside the target sphere for one second. Following the hold
period, the robotic arm moved to its home position and the
participant returned their arm to the resting arm position.
After a brief pause, the target was repositioned and an audible
cue signaled the next reach. Each participant made 250
reaching movements.

Fingertip position was recorded using an optical tracking
system (Optotrak 3020, Northern Digital Inc., Waterloo,
Ontario, Canada). The participants wore a rigid assembly
containing an index-finger brace and an LED marker cluster.
The markers were held over the dorsal aspect of the right
hand. After calibration, the position of the fingertip was
continuously calculated relative to the position and orien-
tation of the marker cluster. Additional LED markers were
attached to the robotic arm. Data was recorded at 100 Hz
and collected on a single desktop computer running custom
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Simulink (Mathworks Inc., Natick, MA, USA) software. The
software also controlled the positioning of the robotic arm.

Post-processing was done offline in Matlab (Mathworks
Inc., Natick, MA, USA). First, the recorded trajectories
were low-pass filtered at 10 Hz using a zero-phase digital
filter. Then, each reaching movement was decomposed into
a series of summed minimum-jerk submovements. Once
the individual submovements were determined, the initiation
times were modeled.

A. Submovement Decomposition

The decomposition was based on an optimization ap-
proach [15], [16], [13] applied in three-dimensions. The
measured reach trajectory is reconstructed using one or more
minimum-jerk submovements of the form:

& () = 30D, (t —]55?50)4 oy (t ;4%)3 (t ;3750)2
d d d
to <t <top+tg (1
z(t)=0
otherwise

where @(t) is the z velocity, D, is the displacement
of the submovement, ¢y is the start time, and ¢4 is the
submovement duration. If more than one submovement is
used, the summation of the submovements represents the
reconstructed trajectory:

F,(t) = Z i (t) (2)

where N is the total number of submovements and ;(t)
represents the x velocity of submovement 4.

Submovements are three-dimensional, so similar expres-
sions exist for y(t) and 2(¢). Therefore, each submovement
has five parameters: D, D,,, D, to, and t4. An optimization
was performed to find the parameters that minimize the
following cost function:

Cost = Z (F (t) — G, (1))?
+(F, (1) = Gy ()
+Y(F (1) = Ga (1)

+ Z (Fspeed (t) - Gspeed (t))2

3)

where F,, F,, and F, represent the x, y, and z velocity
components of the reconstructed trajectory, and G, G, and
G, represent the x, y, and z velocity components of the
measured trajectory. Fipeeq and Ggpeeq Were introduced to
prevent simultaneous submovements of opposite displace-
ments from occurring [16]. They are defined as follows:

TABLE I
INPUTS FOR ARTIFICIAL NEURAL NETWORK

Input Name Description

Scaled Amplitude Amplitude of current submovement relative to

distance-to-target at submovement initiation

Distance Remaining distance-to-go in current submovement

Error Distance from current position to target

Scaled Error Error relative to distance-to-target at submovement
initiation

% Remaining Time  Remaining time relative to submovement duration

Elapsed Time Time since current submovement began

Velocity Sum of velocities of current and previous
submovements
Speed Tangential velocity

Fapeea (1) = \/ Fu (0% + F, (1) + F. (1)?
Gpeea (1) = \/Ga (1) + Gy (1) + G- (1)?

The number of submovements N is unknown a priori,
so for each reach, decomposition was repeated for N =
{1,...,10}. As the number of submovements increases, the
cost decreases. The optimal number of submovements was
determined using an algorithm that detects the point of max-
imum curvature in the cost-per-submovements curve [17],
selecting the minimum number of submovements required
for near-asymptotic performance.

“4)

B. Initiation-Time Prediction

From the optimal set of submovements, a number of
parameters were calculated. These parameters, described in
Table I, were used as inputs for a feed-forward ANN with
one hidden layer containing 10 neurons.

The data was divided into separate training and testing
sets. For each submovement, at each point in time, the ANN
was trained to produce 1 if the subsequent submovement
had begun, and 0 otherwise. The network was trained using
Bayesian regulation backpropagation.

The testing sets were used to evaluate network perfor-
mance. For each submovement in the testing sets, the ANN
was evaluated on the inputs at each point in time. The first
timestep with ANN output exceeding 0.5 was determined to
be the initiation time ¢, for the subsequent submovement.

Cross-validation was performed by repeated random sub-
sampling. In total, the data was resampled 300 times and the
ANN was trained 300 times.

III. RESULTS

For each testing set, the true positives, false positives, true
negatives, false negatives, sensitivity, specificity, positive pre-
dictive value, and negative predictive value were calculated.
The means of these values over all testing set samples for
participant C are shown in Table II. The corresponding values
for participants A and B are similar but not shown.
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ACTUAL CORRECTIONS VS PREDICTED CORRECTIONS

Actual Correction

TABLE I

No Actual Correction

Histogram of R2 for Testing Sets

70 T T T

Predicted Correction

Predicted Correction

83.0 4.8
(True Positive) (False Positive)
No Predicted Correction No Predicted Correction
13.8 452 3
(False Negative) (True Negative) 5
Related Values
Sensitivity 85.8%  Specificity 90.4%
Positive Predictive Value  94.6%  Negative Predictive Value  86.4%

Note: values shown are means taken over all testing sets for participant C

True positives represent submovements for which there
was a correction and the correction was predicted success-
fully. False positives represent submovements for which there
were no actual corrections but a correction was predicted.
True negatives represent submovements for which there were
no actual corrections and no correction was predicted. False
negatives represent submovements for which there was an
actual correction but a correction was not predicted.

For the true positive cases, the actual time of correction
was plotted against the predicted time of correction (Fig 1).
Initiation times are shown relative to the time the previous
submovement began. This was repeated over the 300 testing
sets and a histogram of the R? values is also shown (Fig 2).

In total, data from three participants were analyzed. The
mean R? for participants A, B, and C were 40.2%, 58.8%,
and 61.5% respectively.

IV. DISCUSSION

The current study shows that an ANN can trigger sub-
movements in a way that mimics the initiation timing of

Actual vs Predicted Movement Initiation Times

0.7F
0.6
0.5

0.4r o

Actual (sec)
o

0.3
0.2

°

°

°

&

01F - O
°.

6‘%\

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Predicted (sec)

Fig. 1. Actual versus predicted movement initiation times for one testing
set from participant C. Initiation times are shown relative to the time
the previous submovement began. The dotted line represents the linear
regression on this testing set, with R2 = 62.6% . Only true positives are
included in the calculation of R2.

0 10 20 30 40 50 60 70 80 90 100
R? (%)

Fig. 2. Histogram of true positive cross-validation results for participant C.
Cross-validation was performed by repeated random subsampling of the data
into training and testing sets. For testing set, a single R? is calculated from
the actual versus predicted movement initiation times for all true positive
cases (Fig.1). This histogram contains all of the R? values from each testing
set. The mean R2 value is 61.5%.

submovements derived from actual 3D target-oriented human
arm trajectories. It has been proposed that a feedforward-
feedback process continuously evaluates errors over the
course of a trajectory, but that corrective submovements are
initiated at discrete points in time [14]. Results suggest that
a simple feed-forward ANN can function as the continuous
error-evaluation process, predicting whether (Table II) and
when (Figures 1 and 2) corrections should happen.

Feed-forward ANNSs can learn any input-output relation-
ship given enough hidden layer neurons [18]. The current
study suggests that there is a relationship between the
submovement parameter inputs (Table I) and whether a
correction is necessary. However, no assumptions are made
regarding the components of the underlying motor processes
that generate submovements.

A previous study demonstrated the ability to predict the
timing of the second submovement in a one-dimensional
monkey arm-pronation-supination task [14], achieving R?
values of 50% and 56% for two monkeys using a simple
model to predict whether corrections are necessary. In the
present study, human participants perform 3D arm reaching
movements and an ANN performs the prediction. If only the
second submovement of each reach are included in the R?
calculation, the values for participants A, B, and C change
to 35.3%, 54.1%, and 65.8% respectively.

Use of R? as a performance metric has limitations because
cases where there are no actual correction times or no
predicted correction times cannot be represented in Figures
1 or 2. For instance, the false-positive case happens when
there is no actual correction, as in the terminal submovement
of each reach, yet there is a predicted correction. There
is no way to include this case without biasing R?. False-
positives and false-negatives should somehow penalize the
performance metric. True-negatives should somehow reward
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the performance metric. However, there is no unbiased way
to represent these cases using R

An attempt was made to represent these cases using the
sensitivity and specificity in Table II. These show that the
model can predict to some degree whether a corrective
submovement is or is not necessary. However, the current
analysis is limited, and more work is necessary to understand
the influence of a certain model specificity or R? value on
the quality of arm reaches generated in part by that model.

There are sources of variability in arm trajectories that
are not accounted for in the current study. These limit the
ability of the ANN to predict when submovements occur.
Neural sources of variability include uncertainty associated
with planning and noise during motor execution [19], [20],
[21]. The dynamics of the arm may play a factor [22]. Also,
there may be measurement noise associated with calculating
the position of the fingertip. Reducing the mass of the
rigid finger-hand assembly and moving the optical tracking
markers closer to the fingertip may mitigate this source of
variability.

The ANN represents the average behavior for each partici-
pant over all of the reach trajectories. In the future, this model
could act as a component of a closed-loop simulation of
reaching movements. The ANN would function as an error-
evaluator, and other components would generate subsequent
submovements when triggered by the ANN.
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