
  

  

Abstract—This paper presents the probability density based 
gradient projection (GP) of the null space of the Jacobian for a 
25 degree of freedom bilateral robotic human body model 
(RHBM). This method was used to predict the inverse 
kinematics of the RHBM and maximize the similarity between 
predicted inverse kinematic poses and recorded data of 10 
subjects performing activities of daily living. The density 
function was created for discrete increments of the workspace. 
The number of increments in each direction (x, y, and z) was 
varied from 1 to 20. Performance of the method was evaluated 
by finding the root mean squared (RMS) of the difference 
between the predicted joint angles relative to the joint angles 
recorded from motion capture. The amount of data included in 
the creation of the probability density function was varied from 
1 to 10 subjects, creating sets of for subjects included and 
excluded from the density function. The performance of the GP 
method for subjects included and excluded from the density 
function was evaluated to test the robustness of the method. 
Accuracy of the GP method varied with amount of incremental 
division of the workspace, increasing the number of increments 
decreased the RMS error of the method, with the error of 
average RMS error of included subjects ranging from 7.7° to 
3.7°. However increasing the number of increments also 
decreased the robustness of the method. 

I. INTRODUCTION 

This research was completed as part of the “Development 
of a Simulation Tool for Upper Extremity Prostheses” at the 
University of South Florida. It was part of an effort to 
develop an accurate prediction of upper body human motion 
for rehabilitation and use in the design and analysis of 
prostheses. Previous work has shown possible secondary 
injury of upper body prostheses users due to compensatory 
motions required to overcome the limited range of motion of 
the prosthetic arm [1]. Studies have shown that a simulation 
using a simplified model of the upper body can predict 
possible compensatory motions [2]. Prediction and modeling 
of human motion has been studied in a variety of fields, 
including 3D graphics, human engineering, biomechanics, 
and others. The ability of a model to accurately predict 
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general human motion of the upper body remains a difficult 
task. The use of the Jacobian for inverse kinematics control 
of redundant manipulators has been well studied [3-6], and 
the weighted least norm solution has been used in simulating 
movement of the human upper body [2, 7, 8]. The accuracy 
of the probability density based gradient projection GP 
method for reconstructing human motion relative to collected 
motion analysis data was analyzed. The accuracy of motion 
reconstruction using the least norm (LN) solution is also 
presented as a reference. A functional joint center method for 
segment definitions from the motion analysis data and subject 
specific parameters allow the RHBM to nearly perfectly 
reconstruct subject motion using the recorded joint angles. 

Karim Abdel-Malek, Zan Mi, et al. [9, 10] have created a 
an upper body model and controlled its pose by optimizing a 
cost function, and have compared their results to motion data 
from the University of Michigan human motion simulation  
(HUMOSIM) database. However, the segments of their 
model and the model used in the database are not the same 
and only a visual comparison between the two motions is 
provided. Other studies have predicted upper-limb motion but 
with the arm originating at the glenohumeral (shoulder) joint 
[11-14]. These models cannot predict compensatory motions 
since they do not include proximal joints of the upper body. 

II. MOTION CAPTURE 

Ten healthy adult subjects participated in this study. 
Subject demographics are given in TABLE I. Motion data 
were collected using an eight camera Vicon® (Oxford, UK) 
motion analysis system with 21 passive reflective markers 
placed on the subject’s skin with double sided adhesive tape. 
Range of motion (RoM) tasks and activities of daily living 
(ADL) of ten healthy adult male subjects were collected. For 
this study, the tasks of opening a door, drinking from a cup, 
brushing hair, lifting a laundry basket, and eating with a knife 
and fork were selected for the analysis. All procedures were 
approved by the University of South Florida Institutional 
Review Board, and informed consent was obtained prior to 
data collection. 

TABLE I. SUBJECT DEMOGRAPHICS 

Subject 
Age 

(years) Sex 
Height 
(cm) 

Body 
Mass (kg) 

Dominant 
Hand 

C01 21 M 173 62.5 R 
C02 25 M 180 79.8 R 
C03 20 M 181 83.5 L 
C04 20 M 180 70.5 R 
C05 24 M 186 100.5 R 
C06 35 M 184 102.5 L 
C07 38 F 160 62 R 
C08 41 M 177 73.2 R 
C09 58 M 174 90.5 R 
C10 54 F 166 65 R 

Avg (±S.D.) 34 (±14) - 176 (±8) 79 (±15) - 
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The range of motion data were collected to find the 
functional joint centers of the subject’s body using the 
methods described by Schönauer [15], and with sufficient 
data to satisfy the validation for use in the upper body based 
on previous work [16]. The model divides the upper body 
into segments for the pelvis, torso, shoulders (scapulae & 
clavicle), upper arms, forearms, and hands. Each segment 
was tracked by a set of markers. The pelvis was used to 
define the base frame and was defined by markers on the skin 
near the anterior, posterior, left, and right superior iliac spine 
of the pelvis (LASI, RASI, LPSI, and RPSI). The torso was 
tracked by markers on the jugular notch (CLAV) and 1st 
thoracic vertebrae (T1). The scapula was tracked by markers 
on the anterior and poster end of the acromion process 
(R&LSHOA, and R&LSHOP). The upper arm was tracked 
by the lateral and medial epicondyle of the elbow (R&LELB, 
and R&LELBM). The forearm was tracked by the radial and 
ulnar protrusion of the wrist (R&LWRA, and R&LWRB). 
Finally, the hand was tracked by a maker on the dorsal side 
of the third metacarpal head (R&LFIN). Raw marker position 
data were collected at 120 Hz and were filtered using an 11 
point weighted moving average filter to remove noise, prior 
to calculation of the joint centers and joint angles. 

Each task was completed three times to ensure that there 
was redundancy in the motion data for each subject. Each of 
the three trials collected were used in testing and training the 
algorithms. The RoM tasks were used to accurately calculate 
the functional joint centers, and generate the subject 
kinematics. The tasks require the subject to move from a 
neutral position to both limits of their comfortable range of 
motion and then return to neutral position. Details on the 
process of joint center extraction and segment definition have 
been reported [17]. 

III. MODEL KINEMATICS 
It is important when modeling a physical system that the 

model and the system be coupled as closely as possible. The 
model was built from the data collected during the RoM 
tasks. The locations of each joint center, coupled with the 
degrees of freedom of each joint are used to calculate the 
Denavit and Hartenburg parameters of the upper body in the 
notation described by Craig [18]. Each subject has a specific 
set of parameters which consists of the segment lengths and 
joint center locations. These sets of parameters were 
extracted from the RoM data that were used to create the 
robotic model, define segments, and calculate the joint angles 
of the ADL tasks. By using the motion analysis data to build 
the model, the kinematics of the model are nearly exactly the 
same as kinematic chain composed from the segments from 
motion analysis of the subjects performing the tasks. The 
error of the forward kinematics of the model relative to the 
recorded end effector position using this method has been 
shown to be very small, with the average error being less than 
1mm [17]. Manual measurements of subject anaotomy can 
also be correlated to the subject parameters if motion analysis 
data is not avalaible, but the forward kinematics will be 
slightly less accurate. The flow of data in validating the 
performance of this method is presented in Figure 1.  

Figure 1. Flow of motion data for this study. RoM data were used to find 
subject kinematics, while ADL data were used for training and testing the 

inverse kinematics of the GP method. 

 
IV. METHODS 

This study used the bilateral end effector position to 
calculate the joint angles of the RHBM. The LN solution was 
used as a reference method to find a baseline of error. Both 
the LN and GP methods required calculation of the inverse of 
the manipulator Jacobian. For the RHBM, 𝑥 is a 12 by 1 
vector containing the Cartesian position and orientation of the 
right and left end effectors respectively, and 𝜃 represents the 
1 by 25 joint angles vector. The Cartesian and joint angle 
velocity are presented as 𝑥̇ and 𝜃̇ respectively. The first three 
joints of the right and left model were represented by the 
torso. Composition of the bilateral Jacobian ( 𝐽) from the 
Jacobians of the right ( 𝐽𝑅) and left ( 𝐽𝐿) arms, and the forward 
kinematics equation is given in Eq. 1. The inverse kinematics 
equation as described by the pseudo inverse of the Jacobian is 
given in Eq. 2, where ( 𝐽+) is the pseudo inverse [5]. The first 
three joints of the right and left arms represented the 
movement of the torso and were shared by both arms. 

𝑥̇ = �𝑥̇𝑅𝑥̇𝐿
� = 𝐽𝜃̇ =  �𝐽𝑅1−3 𝐽𝑅4−14 0

𝐽𝐿1−3 0 𝐽𝐿4−14
� �
𝜃̇𝑅&𝐿1−3

𝜃̇𝑅
𝜃̇𝐿

� (1) 

The least norm method uses the pseudo inverse of the 
Jacobian to find the mapping between end effector Cartesian 
and joint angle velocities; this was used to find the inverse 
kinematics by finding the difference between the forward 
kinematic solution and the desired end effector position. 

𝜃̇ = 𝐽+𝑥̇   (2) 

In this formulation both arms can move simultaneously 
but the movements of the arms were coupled. If the left hand 
moves and the right hand remains still, the joint angles of the 
right arm will have to change as well to accommodate the 
movement of the torso. Given a series of end effector 
positions and orientations, the corresponding joint angles 
were calculated by solving for each step in the series. Due to 
the non-linearity of the equations, error was introduced based 
on the size of the step between end effector trajectory points. 
In this application, this error was small because data were 
collected at a 120Hz frame rate and movement during the 
ADLs was generally slow. However, error was minimized by 
using the forward kinematics of the current position at each 
iteration when calculating the end effector difference. The 
formula for the iterative least norm solution is given in Eq. 
(3), where 𝑓𝑘𝑖𝑛𝑒(𝜃𝑖) is the forward kinematic solution of the 
RHBM.  

𝜃𝑖+1 = 𝜃𝑖 + 𝐽+(𝑥𝑖+1 − 𝑓𝑘𝑖𝑛𝑒(𝜃𝑖))     (3) 
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This method is referred to as the least norm solution 
because it produces the solution to the inverse kinematics that 
minimizes the norm or the joint angular velocities. The 
gradient projection method used the null-space of the 
Jacobian to optimize the redundancy of the system. The joint 
angle velocity of the gradient projection method (𝛩̇𝐺𝑃𝑀), is 
described in Eq. 4, and is a function of the Jacobian, the end 
effectors’ velocity, and the gradient vector (∇H). The 
gradient vector ∇H is described by the gradient of a function 
of the joint angles that should be minimized.  

𝛩̇𝐺𝑃𝑀 = 𝐽+ ∗ 𝑥̇ + (𝐼 −  𝐽+𝐽) ∗ ∇𝐻    (4) 
In this study, the performance was defined by the ability 

to reproduce the pose of the RHBM to match the pose of the 
subjects performing the recorded tasks. Therefore, the inverse 
of the joint angle density function, obtained from the motion 
data, was used to find the gradient vector as shown in Eq. 5. 
Here the gradient vector is formed by taking the partial 
derivatives of the inverse of the joint angle density function 
for each of the joint angles. The probability density function 
is the non-parametric density distribution as calculated by the 
Matlab function ‘ksdensity.m’ using the joint angle data from 
motion analysis of subjects included in the training set. The 
scalar quantity k was used to affect the rate of convergence of 
the solution on the inverse density function. This is similar to 
the methods used by Artemiadis et al [13] but uses a non-
parametric distribution instead of a Gaussian distribution. 

∇𝐻𝑖 = 𝑘 ∗ 𝑑
𝑑𝜃𝑖

(𝐷𝑒𝑛𝑠𝑖𝑡𝑦−1(𝜃𝑖))   (5) 

To increase the accuracy of the solution, the joint angle 
data were divided into groups based on end effector position. 
The end effector space was divided into evenly spaced 
increments, along the x, y, and z axes of the reference frame. 
This creates a number of discrete sets of data, equal to the 
cube of the number of increments along each axis, that were 
used to create the probability density distributions. The 
selection of the increment used was based on the position of 
the hands (end effectors) at each instance of the trial. The 
associated probability density distribution for that increment 
was then used to find the gradient vector. This accuracy of 
the probability density gradient projection was tested for 
increments from 1 to 20 along each axis. The probability 
function serves partially as a joint limit function by restricting 
movement outside of observed joint angles. This ensured that 
a stable solution was reached. The ranges of observed joint 
angles were always within theoretical anatomical joint limits. 
Therefore, the probability density function imposed a greater 
constraint on motion than a joint limit constraint would. 

RMS error was calculated by finding the root of the mean 
of the square of the difference between the predicted joint 
angles and the recorded joint angles. 

𝑹𝑴𝑺𝒆𝒓𝒓𝒐𝒓 = �∑(𝜣𝑴𝑨−𝜣𝑿)𝟐

𝑵
  (6) 

The errors were then evaluated for each subject and the 
number of subjects who’s data was included in the creation of 
the density function was varied from 1 to 10, as shown in 
TABLE II. This allows the evaluation of the sensitivity of the 
method to included and excluded data to be determined. If 

the method is found to be insensitive to the amount of 
included data it is called robust. 

TABLE II. Data distribution for robustness testing 
 Robustness Test Number  
 1 2 3 4 5 6 7 8 9 10  

Ex
cl

ud
ed

 

C01 C01 - 
C02 

C01-  
C03 

C01 - 
C04 

C01 - 
C05 

C01 - 
C06 

C01-  
C07 

C01 - 
C08 

C01 - 
C09 

C01 - 
C10 

In
cl

ud
ed

 

C02 - 
C10 

C03 - 
C10 

C04 - 
C10 

C05 - 
C10 

C06 - 
C10 

C07 - 
C10 

C08 - 
C10 

C09 - 
C10 C10 - 

V. RESULTS 
An example of the joint angle density function is shown 

in Figure 2, and the associated inverse density and gradient 
function are shown in Figure 3. 

Figure 2. Density function for torso extension (joint 1) 

 

Figure 3. Inverse density and gradient function for torso extension (joint 1) 

 

The LN method produced an average RMS error of 11.1° 
(±1.5°). This method exhibits increasing accuracy as the 
amount of workspace division increases, as shown in Figure 
4. In the extreme case, this would end in each point of the 
workspace being assigned a specific joint angle distribution, 
if sufficient data were available. For the tested increments, 
the average RMS error for the GP method ranged from 7.7° 
(±1.0°) for 1 increment to 3.7° (±0.4°) for 20 increments. A 
Wilcoxon two-sided rank sum test was performed in Matlab 
between the subject RMS error of the GP and LN methods 
found that the difference between methods was significant for 
all increments, (p < 0.001). 

Figure 4. GP accuracy vs. division of end effector space 
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The robustness of the GP method was very low for 
greater number of increments (inc.), the error for subjects 
whose data was included in the density function set was low, 
while the error for persons in the excluded data set was high. 
The addition of more data to included data set has little effect 
on the error of either sets. As the number of increments 
decreases, the robustness of the GP increases. Using a 
logarithmic regression on each data set, inc=19 will likely 
never converge, inc=10 will likely converge with 162 
subjects (at an estimated average error of 6.6°), and with 
inc=5 will likely converge with 23 subjects (at an estimated 
average error of 7.5°). The coefficient of determination (r2) 
was used to evaluate the confidence in the regression. The fit 
was poor (r2 < 0.8) for the subject data included in the density 
function, and good (0.80 < r2 < 0.99) for the subject data 
excluded from the density function. The average RMS joint 
angle error for each data set of the inc=5 increment level 
robustness tests are given in Figure 5. 

Figure 5. Robustness of the GP method with 53 workspace increments 
(inc=5), for subjects included and excluded from the density function. 

 

VI. DISCUSSION 
This paper presented an analysis of the probability density 

gradient projection (GP) method for predicting human upper 
body inverse kinematics. The impact of adding additional 
increments was greatest when the number of increments was 
low, and decreases as the number grows. With the limited 
data available for this study, increasing the number of 
increments also increases the number of end effector sets 
where no data were available. In these positions, the GP 
method behaves the same as the least norm solution. From 
this analysis, the GP methods with fewer increments may be 
more appropriate because they are more robust while they 
still provide a reasonable prediction of subject motion. Also, 
the GP method with a low numbers of increments is still 
significantly better than the LN. At this point it is clear that 
additional data is needed to verify the performance of the GP 
method, since extrapolation of existing data is not a reliable 
method. Further development of methods and testing with 
recorded human motion will likely improve the accuracy and 
reliability of the GP method for predicting human motion. 
The gradient projection of the RHBM’s null-space is 
appealing because it allows for the optimization of a wide 
variety of constraints, yet it is difficult because it requires 
tuning of the rate of convergence of the function to ensure 
stability. Overall, this method presents an acceptable solution 
to human-model inverse kinematics. Visual inspection of 
joint angle error when viewing the predicted pose appears 
good. This may be in part because the errors of the GP tend 
to be higher for joints that have high variation between 

subjects, and therefore do not appear unnatural when 
variation occurs. In this context, the performance of the GP 
method relative to the LN appears to be much better than 
suggested by the improvement in the RMS errors presented 
here. Development of additional method for evaluating the 
human likeness of predicted motions could also be used to 
further verify this and other methods.   
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