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Abstract— Measuring the spatial and temporal characteris-
tics of hand movement is a challenging task due to the large
number of degrees of freedom (DOF) in the hand. This paper
presents a multi-constrained inverse kinematics (IK) approach
for hand motion estimation from motion capture data. The
IK approach satisfies a set of prioritized motion and postural
constraints for each hand joint and link. The high-priority
constraint is fully satisfied, while the fulfilment of the low-
priority constraints is achieved as long as no conflict with
the high-priority constraint exists. The proposed approach can
aid marker-based motion capture technologies in accurately
reconstructing discontinuities or erroneous marker trajectory
segments resulting from occluded, missing, or flipped markers.
The performance of the multi-constrained IK approach for the
hand is tested for a full range of continuous hand motion.

I. INTRODUCTION

Fine hand finger tracking finds application in a wide range

of fields including robotics, computer animation, ergonomics

and rehabilitation (e.g.,[1]). A popular technology for mea-

suring human movement is optical motion capture, in which

reflective markers are secured to landmarks on the body and

tracked using high speed cameras [2]. Optical motion capture

systems have been used in clinical research as a tool to

measure abnormalities in finger motions due to pathologi-

cal conditions or neurological impairments (e.g., [3], [4]).

However, accurately measuring fine hand and finger motions

using optical motion capture is challenging due to issues of

occlusion and marker flipping (misidentification of markers

when two markers come into close proximity) caused by

the large number of markers attached to a small area. Post-

processing of the motion capture data to correct flipped

markers and apply spline fits to fill-in occluded markers is

a tedious task as it requires retracing the marker trajectories

frame by frame for discontinuities and unrealistic behaviours

(due to marker flipping). Therefore, there is a need for a

tool that can automatically reconstruct the defective motion

segments.

Commercial motion capture systems (e.g., [2]) provide

tools such as a reference kinematic model (skeleton) and

virtual markers to help acquire clean and continuous motion

data. Missing marker trajectories are recovered from neigh-

bouring marker trajectories located on the same rigid body

segment using inter-marker distance constraints in [5]. Inter-

polation techniques are used for reconstructing short missing

marker trajectories (e.g.,[6]). The interpolation techniques
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require data samples before and after the occlusion; hence,

they are only applicable at the post-processing stage. In [7],

an extrapolation approach for reconstructing short missing

marker trajectory segments from the previously observed

marker positions is presented with the assumption that the

underlying human motions are linear or circular. Human mo-

tions are modeled using a conditional restricted Boltzmann

machine in [8], and the resulting models are used to recover

the missing marker positions during motion capture. In [9], a

dynamic Bayesian network is used to reconstruct the missing

marker trajectories assuming that the trajectories are smooth

and that there is a correlation between different marker

trajectories. Motion sequences are modeled using principal

component analysis (PCA) as a hierarchy of linear models,

and then a motion sequence with discontinuous marker

trajectories is recovered through least squares optimization

using available marker positions and the closest linear model

representing the motion [10]. These approaches are data-

driven; hence, their performance depends on the richness of

the human motion data used for the model training. Another

approach is the use of filtering methods, such as Unscented

Kalman filtering [11]. This approach uses the velocity and

acceleration of the tracked marker as the observation states

along with those of the neighbouring markers to enhance

the reconstruction accuracy. An inverse kinematic solver is

then applied to ensure constant link length. The velocity and

acceleration information can be very noisy if derived from

the captured marker positions. Additional equipment can be

used to directly measure velocity and acceleration, however

this results in difficulties such as synchronization between

separate measurement systems. Furthermore, this approach

requires the placement of three markers with constant inter-

marker distances on each rigid body segment (in our case,

the small area of the finger phalanges), which may result in

increased marker occlusion and/or flipping.

Another class of approaches to determine the joint con-

figuration given a measured posture or end-point position

is Inverse Kinematics (IK). There are two main approaches

in IK: analytical and differential. Analytical IK is obtained

by finding a closed form solution for the inverse of the

forward kinematic function, and is specific to a particular

structure being studied. However, a closed-form solution is

not guaranteed to exist for complex kinematic structures.

In contrast with the analytical approach, the differential ap-

proach is applicable to any kinematic structure. Differential

IK linearly maps the Cartesian velocity of a point along a

kinematic chain to the joint velocities along the chain using

the structure Jacobian. Comparisons between different IK

approaches for articulated body motions can be found in [12]

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

6780978-1-4577-1787-1/12/$26.00 ©2012 Crown



and [13].

A challenging problem in computing IK arises when

dealing with kinematically complex structures (i.e., structures

with a large number of DOF and kinematic constraints such

as limitations in the joint range of motion). Furthermore,

there might be scenarios where multiple and sometimes

conflicting postural and motion constraints are specified

in the operational space. A closed-form IK solution for

computing finger joint angles from motion capture is re-

ported in [14]. An iterative forward-backward IK is proposed

in [15] that allows incorporating kinematic constraints for

producing human-like animated motions. These methods are

either computationally expensive; hence not applicable in

real time, or/and are not designed to address deficiencies

in the captured data resulting from missing, occluded or

flipping markers. Furthermore, the application of the majority

of the motion capture recovery techniques mentioned above

is limited to scenarios where the position of the distal hand

end-points (i.e., fingertips) is specified.

This paper adapts a multi-constrained IK approach pro-

posed by Yamane and Nakamura [16] for estimating the

hand joint configuration from motion capture data. The

approach uses differential IK to solve for an appropriate joint

configuration that best fits a specified link trajectory subject

to a set of kinematic constraints. The multi-constrained IK

allows for the specification of a Cartesian trajectory of any

hand link as a high-priority constraint and reconstructs the

motion of the hand joints to fit the specified trajectory.

In order to comply with the kinematic constraints of the

hand, the multi-constrained IK approach incorporates a set

of low-priority motion and postural constraints in the form of

reference link positions, joints with reference angles, and out

of range joints. The high-priority constraint is satisfied first,

with a solution for the low-priority constraints investigated

in the null-space of the high-priority constraints (i.e., a space

where joint angle modifications do not affect the specified

trajectory of the high-priority constraint). In this study, a

set of captured hand motion sequences is used to test the

reconstruction accuracy and time resource requirements of

the multi-constrained IK approach. The results demonstrate

the capability of the multi-constrained IK to accurately

and rapidly estimate the hand joint configuration given a

high-priority Cartesian trajectory and a set of low-priority

kinematic constraints.

II. METHODOLOGY

A. Human Hand Model

The hand is modeled as a rigid multi-body structure

with multiple distal joints (end-effectors). Many robotic and

animated human hand models have been proposed (e.g.,

[17], [18], [19], [20]). Typically, the rigid bodies (links) are

connected via joints, which actuate the movement of the

links. In this paper, a hand model with 26 DOF is considered

(Fig. 1) [21], but the proposed approach is applicable to

any rigid body hand model. In the model shown in Fig. 1,

there are 3 DOF at each of the wrist, thumb carpometacarpal

(CMC) and metacarpophalangeal (MCP) joints. MCP joints

Fig. 1. Hand schematic showing DOF of hand joints. Finger tips are shown
by red circles.

at the other four fingers of the hand (index, middle, ring

and small (IMRS)), have 2 DOF each and their proximal

interphalangeal (PIP) and distal interphalangeal (DIP) joints

are 1 DOF. The thumb interphalangeal (IP) joint also has

1 DOF. The length of the hand links (fingers’ phalanges)

can be measured or estimated using two anthropomorphic

parameters, hand length (HL) and hand breadth (HB), as

described in [22] and [23].

B. Multi-constrained Inverse Kinematics

The multi-constrained IK allows for the trajectory of any

point on any of the hand links to be specified (not necessarily

the distal links) and uses a Jacobian to obtain a linear

transformation between the link velocity and the velocities

of the structure’s joint angles [16]. The Jacobian is a matrix

of partial derivatives of a given link position (ri) with respect

to the structure’s joints (θ)(Equation 1). Orin and Schrader

in [24] discuss how to calculate the Jacobian matrix entries

for different representations of joints and multi-bodies.

J =
∂ri

∂θ
(1)

There are two levels of kinematic constraints considered

in the multi-constrained IK; high-priority and low-priority

constraints. High-priority constraints are fully satisfied, while

fulfilment of the low-priority constraints is implemented in

the null-space of the Jacobian of the high-priority constraints.

For example, if the thumb is modelled as a 5DoF kinematic

chain and the position of the thumb fingertip is specified as

the high-priority constraint, 3 of the thumb DoFs are used to

satisfy the position constraint, while the remaining DoF can

be used to satisfy the low priority constraints. The Jacobian

based method automatically identifies a decomposition of the

available DoFs which can be used to satisfy the null-space

constraints based on the current posture of the kinematic

chain. Furthermore, in case of conflict between the low-

priority constraints, least squares optimization is applied to

find an optimal solution for a set of low-priority constraints.

Suppose the joint angles of a kinematic chain are arranged in

a vector θ and rP is the current position of the link with a

specified trajectory (high-priority constraint). The Jacobian

matrix JP maps the velocity of the link (ṙP ) to the joint

velocities (θ̇):

ṙP = JP θ̇. (2)

When the Jacobian matrix is square and non-singular, it

can be inverted to obtain the changes in joint angles for a

desired change in position of the link. However, when dealing
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with structures with a large number of DOF, the mapping

between the operational space (Cartesian space) and joint

space is not unique. In this case, the pseudo-inverse, J
♯
P ,

can be used (Equation 3) to generate one of the feasible

solutions.

J
♯
P = JT

P (JPJ
T
P )−1. (3)

The resulting pseudo-inverse is then used to compute the

appropriate joint velocities for the link at current position

rP to reach the desired position r
ref
P at a reference velocity

of ṙ
ref
P :

θ̇ = J
♯
P ṙ

d
P + (I − J

♯
PJP )y, (4)

ṙdP = ṙ
ref
P +KP (r

ref
P − rP ), (5)

where I is an identity matrix, y is an arbitrary vector, KP is

a positive-definite gain matrix, and ṙdP is the desired velocity

for the link. The high priority constraint is satisfied via the

first term in Equation 4. If the structure is redundant with

respect to the task, additional constraints can be satisfied

with the DOFs not involved with satisfying the high priority

constraints, these low priority constraints are satisfied via

the second term in Equation 4. Three types of low-priority

constraints are considered: reference link positions, reference

joint angles and joint motion range limits. Suppose there are

NF links with reference positions rFi ; i = [1, 2, ..., NF ],
ND joints with reference joint angles θD, and NR joints with

out-of-range joint angles θR. Consider a vector PL of all the

low-priority constraints.

PL = [rTF1
rTF1

... rTFNF
θD

T θR
T ], (6)

The Jacobian JL maps the ṖL to the joint velocities θ̇;

ṖL = JLθ̇. To obtain JL, the Jacobian matrices JFi relating

individual link velocities ˙rFi to θ̇ need to be computed;

˙rFi = JFiθ̇. The velocities of the joints with reference angles

(θD) and out of range joints (θR) are related to θ̇ as:

˙θD = JD θ̇, (7)

˙θR = JRθ̇, (8)

where JD is obtained as:

JD(i, j) =

{

1, if θD(i) = θ(j)
0, otherwise.

(9)

The matrix JR is obtained in a similar way as JD. Next, JL
is formed by concatenating JFi, JD, and JR as follows:

JL =
(

JT
F1

... JT
FNF

JT
D JT

R

)T
. (10)

The desired velocity of the low-priority constraints, Ṗ d
L, is

then computed using a series of feedback laws to account for

differences between low-priority constraints and their current

values (rFi
, θD, θR):

ṙdFi = KF (r
ref
Fi − rFi), (11)

θ̇dD = KD(θrefD − θD), (12)

θ̇dRi =

{

KRi(θ
max
Ri − θRi), if(θRi(i) > θmax

Ri )
KRi(θ

min
Ri − θRi), if(θRi(i) < θmax

Ri ),
(13)

where the superscripts d and ref indicate the desired and

reference quantities, respectively. For instance, θ̇dD is the

desired velocity to compensate for the difference between

the reference joint angles (θ
ref
D ) and the current values of

the joint angles (θD). θmax
Ri and θmin

Ri are the limits of θRi’s

motion range. KF and KD are positive definite matrices

and KRi is a positive scalar. After computing JL and Ṗ d
L,

the change in velocity due to the low-priority constraints is

computed:

∆ṖL = Ṗ d
L − JL(J

♯
P ṙ

d
P ) (14)

= JL(I − J
♯
PJP )y (15)

= Sy. (16)

S is likely to be singular due to the multiple and perhaps

conflicting kinematic constraints when dealing with complex

structures. Applying the pseudo-inverse produces large and

infeasible velocities in the vicinity of the singularity. There-

fore, to invert S for obtaining y, a singularity robust (SR)

matrix inversion is used. The use of the SR inverse ensures

that the S matrix can be inverted, but introduces a small

error (Equation 17), which is then compensated using the

feedback control law (Equation 5).

S∗ = ST (SST + kI)−1, (17)

where I is an identity matrix and k is a weighting parameter

that controls the exactness versus feasibility of the solution

(exact joint velocities versus erroneous but feasible ones).

Next, y is obtained as:

y = S∗∆ṖL. (18)

The resulting y vector is substituted into Equation (4) to

obtain θ̇, which is then integrated to get an appropriate joint

configuration θ.

III. EXPERIMENTAL RESULTS

To test the performance of the multi-constrained IK, a

continuous hand motion sequence consisting of 5 repetitions

of hand opening and closing was used. The hand motion was

recorded using ShapeHand dataglove [21] and local Euler

angles for all the hand joints were collected at approximately

84 frames per second (total of 3240 time frames). This

motion data is used for two purposes in our experiment.

In the absence of optical motion capture data, the Euler

angles and the hand model described in Section II-A are

used to compute Cartesian trajectories using forward kine-

matics. In order to demonstrate the IK algorithm’s ability

to handle the underconstrained problem, only a small subset

of these Cartesian joint trajectories will form the reference

trajectories for the IK algorithm. It should be emphasized

that typically this Cartesian information would come from

an optical motion tracking system, so that the dataglove is

not a required component of our approach to IK. The second

use of the measured Euler angles is as a validation of the

IK algorithm: it provides ground truth for comparing the

joint angles estimated using multi-constrained IK with the

measured (actual) angles. This validation data would not be

available with optical motion capture.

In the experimental setup, the high-priority constraints (the

links with specified trajectories) are the finger tips. The joint

motion ranges are shown in Table I. The rotation around the

Z-axis for the thumb CMC and MCP are added according to

the thumb kinematic model used in ShapeHand dataglove;
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TABLE I

HAND JOINTS’ MOTION RANGE IN DEGREES [21], [22]

(COUNTER-CLOCKWISE ROTATION \CLOCKWISE ROTATION).

MCP PIP DIP
X Y X X

Index 0\80 13\42 0\100 10\90
Middle 0\80 35\8 0\100 10\90
Ring 0\80 20\14 0\100 20\90
Small 0\80 33\19 0\100 30\90

CMC MCP DIP
X Y Z X Y Z Y

Thumb 5\40 80\20 2\60 16\0 80\10 16\0 90\10

Fig. 2. The joint configuration, θD , used as the reference hand posture.

hence, the motion range of the thumb joints is chosen to

asymptotically accommodate the extrema of the thumb joint

motion in the hand motion used here. Fig. 2 shows the joint

configuration used as the reference posture. Furthermore, in

the experimental setup, the reference high-priority velocity,

ṙ
ref
P , is set to zero as this quantity may not be available

during on-line motion capture.

The performance of the multi-constrained IK is tested un-

der two scenarios: the measured Cartesian trajectories of the

DIP and PIP joints of the IMRS fingers (IP and MCP joints of

the thumb) are used as the low-priority reference trajectory

constraints in the first and second scenarios, respectively.

In the implementation of the multi-constrained IK, at each

time step, rP and rFi, the current positions of the high-

priority and low-priority link trajectories, are computed using

forward kinematics from the latest estimated (by the multi-

constrained IK) joint angles. Furthermore, at each time step,

r
ref
P and r

ref
Fi , the reference position of the high-priority

and low-priority link Cartesian trajectories, are updated with

the values computed using the joint angles recorded by

the dataglove. Note that the multi-constrained IK does not

use any of the measured joint angles from the dataglove

to compute other joint angles. The multi-constrained IK

continuously monitors the hand joints for out of range joints

to constrain them as described in Section II-B.

TABLE III

RMS ERRORS IN DEGREES BETWEEN THE ACTUAL AND ESTIMATED

IMRS JOINT ANGLES IN THE TWO TESTING SCENARIOS: CONSTRAINED

DIP AND CONSTRAINED PIP CARTESIAN POSITIONS.

MCP PIP DIP
X Y X X

Constraint DIP PIP DIP PIP DIP PIP DIP PIP

Index 0.26 0.25 0.09 0.07 0.79 0.90 0.35 2.62
Middle 0.36 0.28 0.09 0.04 1.08 0.59 0.45 2.52
Ring 0.55 0.35 0.07 0.04 1.48 0.88 0.57 3.36
Small 0.42 0.33 0.17 0.09 1.35 0.82 0.70 2.72

The joint configuration for each timestep in the hand mo-

tion was then computed using the multi-constrained IK with

the following parameters (chosen by trial and error); k =
0.01;KP = 1.25I3×3;KR = 0.05;KF = 1.2I3×3;KD =
0.01I4×4 (for thumb KD is a 7 × 7 matrix), where I’s are

identity matrices. The wrist was fixed in the hand motions

used here. Fig. 3 shows an example joint angle trajectory

obtained using the multi-constrained IK, compared to the

actual joint angle data collected with the dataglove. Tables

II and III show the root mean square (RMS) errors between

the actual and estimated joint angle trajectories for each hand

joint under the two testing scenarios. The low RMS errors,

especially at DIP and IP joints in the case of constrained

DIP positions for IMRS and constrained IP position for

thumb, demonstrate the capability of the multi-constrained

IK to accurately reconstruct the captured hand joint angle

trajectories. As can be seen from the results (Fig. 3 and

Tables II and III), the proper choice of the low-priority

reference Cartesian trajectory constrain is an important factor

for accurate estimation of the joint angle trajectories. In

Fig. 3, in the case of constrained PIP position, there are

large overshoots at the rising edges of the estimated joint

angle trajectory. This might be either a result of inherent

high-frequency artifacts in the captured motions or it is

due to an abrupt change in the motion. By constraining

the DIP position instead of PIP position, the overshooting

behaviour is avoided and the joint angle trajectory is ac-

curately estimated. This demonstrates the flexibility of the

presented multi-constrained IK, which enables incorporating

and replacing constraints at different points of the hand in

order to construct realistic and accurate motion data. The

resulting joint angle trajectories were also used to animate the

hand motion and the reconstruction quality of the resulting

hand motion was visually confirmed. The experiment was

run using MATLAB and took 15.3 sec (MATLAB timer)

to obtain the IK solutions for 3240 time frames (38 sec)

of the hand motion used here. This shows the computational

efficiency of the presented approach, which makes it suitable

for on-line implementation with a motion capture system.

0 5 10 15 20 25 30

0

10

20

30

40

50

60

Time (sec)

M
id

d
le

 D
IP

 F
/E

(d
e

g
re

e
s

)

 

 
Actual

Estimated with cons. PIP

Estimated with cons. DIP

Fig. 3. The actual (bold black line) and estimated joint angle trajectories
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position: red dotted line) for the middle’s DIP flexion/extension.
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TABLE II

RMS ERRORS IN DEGREES BETWEEN THE ACTUAL AND ESTIMATED THUMB JOINT ANGLES IN THE TWO TESTING SCENARIOS: CONSTRAINED IP AND

CONSTRAINED MCP CARTESIAN POSITIONS.

CMC MCP IP
X Y Z X Y Z Y

Constraint IP MCP IP MCP IP MCP IP MCP IP MCP IP MCP IP MCP

Thumb 6.92 5.54 2.56 1.96 7.31 6.46 5.55 3.88 2.37 1.64 5.62 5.63 1.12 3.31

IV. DISCUSSION AND CONCLUSIONS

A multi-constrained IK approach was proposed to estimate

joint angles given position data for a complex hand model.

The performance of the multi-constrained IK solver for the

hand is promising and shows the capability of the approach

to accurately and rapidly estimate an appropriate joint con-

figuration for a given hand pose. The multi-constrained IK

is not limited to a specific structure and can be extended to

other structures with varied number of DOF and kinematic

constraints. An important feature of the multi-constrained

IK approach is that it enables the specification of any point

of interest on the hand as the high-priority constraint and

reconstructs its motion with the highest accuracy. It also

allows for the definition of low-priority constraints on link

positions, joint angle errors, and joint motion ranges for any

link and joint on the hand to enhance the reconstruction

accuracy. Therefore, the multi-constrained IK is particularly

suitable for reconstructing captured motions (which may

have some missing marker data) by specifying the measured

trajectory of a visible marker as the high-priority constraint

and estimating a feasible hand joint configuration to fit the

specified trajectory. The resulting joint configuration can then

be used to construct the missing marker Cartesian trajectories

by applying forward kinematics. Furthermore, The multi-

constrained IK is fast; hence applicable for on-line motion

capture.

The poorer estimation of the thumb joint angles (larger

RMS value in Table II) as compared with the estimated

IMRS joint angles (Table III) is due to inaccuracies in

the thumb kinematic model. In general, the reconstruction

performance of the multi-constrained IK depends on (ordered

based on their importance): 1) the accuracy of the kinematic

model, 2) the duration of the missing distal marker trajec-

tory; performance deteriorates as the distal marker along a

kinematic chain stays unseen for a long time, 3) the proper

choice of the gain parameters. In future work, a method for

optimizing the gain parameters will be investigated.
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