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Abstract— High-resolution, real-time data obtained by hu-
man motion tracking systems can be used for gait analysis,
which helps better understanding the cause of many diseases
for more effective treatments, such as rehabilitation for outpa-
tients or recovery from lost motor functions after a stroke.
This paper presents an analytically derived method for an
adaptive-gain complementary filter based on the convergence
rate from the Gauss-Newton optimization algorithm (GNA)
and the divergence rate from the gyroscope, which is referred
as Adaptive-Gain Orientation Filter (AGOF) in this paper.
The AGOF has the advantages of one iteration calculation
to reduce the computing load and accurate estimation of
gyroscope measurement error. Moreover, for handling magnetic
distortions especially in indoor environments and movements
with excessive acceleration, adaptive measurement vectors and
a reference vector for Earth’s magnetic field selection schemes
are introduced to help the GNA find more accurate direction
of gyroscope error. Experimental results are presented to verify
the performance of the proposed method, which shows better
accuracy of orientation estimation than several well-known
methods.

I. INTRODUCTION
Recent developments in miniature sensor technology have

led many researchers to utilize wearable inertial sensors to
capture human movement out of controlled volumes, because
they are independent from an infrastructure and relatively
low cost, light weight and compact in size. Therefore, human
limb movements can be measured through the attachment of
an inertial/magnetic sensor module in human’s free-living
environments for the practice of physical medicine and
rehabilitation. Such a sensor module typically consists of
a tri-axis accelerometer, a tri-axis gyroscope, and a tri-axis
magnetometer and is compact in size, which can be called
wearable MARG (Magnetic, Angular Rate and Gravity) sen-
sor [1]. Meanwhile, the embedded wireless sensor network
(Bluetooth) makes the attachment of sensors much easier.

However, there are two major challenges for estimating
orientation using a MARG sensor. First, directly integrating
the angular velocity from the tri-axis gyroscope suffers
from drift accumulation in a long-term tracking [2], which
negatively affects the orientation estimation accuracy. Sec-
ondly, as aiding sensors for mitigating the drift, the tri-
axis accelerometers and magnetometers are employed for the
vertical (Earth’s gravity) and the horizontal (Earth’s magnetic
field) references, respectively. However, accelerometers are
sensitive to excessive accelerations under dynamic motion
conditions, while magnetometer measurements suffer from
local earth magnetic field variations [3], which are easily
caused by common everyday objects and influence the di-
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Fig. 1. The main framework of the AGOF for orientation estimation.

rection of the Earth’s magnetic field, further affecting the
desired orientation estimation.

In order to overcome these challenges, an Adaptive-Gain
Orientation Filter (AGOF) is proposed in this paper based on
the basic theory of deterministic approach and frequency-
based approach, and it is tested on a newly developed
MARG sensor. The main framework of the proposed AGOF
(Adaptive-Gain Orientation Filter) includes 4 major parts: (a)
gyro integration; (b) vector observations; (c) complementary
filter; and (d) compensation schemes, which are shown as
dotted blocks in Figure 1. The main contributions of this
paper are summarized as follows: 1) an analytical approach
of combining the GNA with a complementary filter for faster
quaternion updates; 2) adaptive measurement vectors and a
reference vector for Earth’s magnetic field selection schemes
in conjunction with the GNA; 3) a gyroscope bias drift
compensation scheme for one input of the complementary
filter; and 4) an adaptive-gain complementary filter based on
the convergence rate from the GNA and the divergence rate
from the gyroscope.

II. ADAPTIVE-GAIN ORIENTATION FILTER
For brevity and clarity, the quaternion-based orientation

representation is chosen and the definitions of mathemati-
cal variables are firstly described as: s–indicating the sen-
sor frame, e–indicating the earth frame, g–gravity vec-
tor, sa–measurements from the accelerometer in s, sω–
measurements from the gyroscope in s, sm–measurements
from the magnetometer in s, s

eqt–quaternion-based orientation
from s to e at time t, s

eq̂ω,t –orientation estimated from
the gyroscope at time t, s

eq̂a,t–orientation estimated from
the accelerometer and magnetometer at time t, and s

eq̂ f ,t–
orientation estimated from the complementary filter fusion
at time t.
A. Orientation Estimation from Gyroscope

The tri-axis gyroscope measures the angular velocities
sω , which is expressed in s and represented as a four-
element row vector: sω = [0 ωx ωy ωz] using the quaternion
representation. The quaternion derivation s

eq̇ describing the
rate of change of orientation from s to e can be calculated
as:

s
eq̇ = 1

2
s
eq̂⊗ sω = 1

2 Ω(sω)s
eq̂ (1)
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where Ω(sω) is the 4×4 skew-symetric matrix of a quater-
nion sω = [0 ωx ωy ωz].

Therefore the orientation from s to e at time t + Δt,
s
eqω,t+Δt , can be calculated by integrating the quaternion
time derivation s

eq̇ω,t+Δt as described by (2) with known
initial condition s

eq̂ω,t . Here, the sub-script ω denotes that
the orientation based on quaternion representation is obtained
from the gyroscope readings.

s
eq̇ω,t+Δt = 1

2
s
eq̂ω,t ⊗

sωt+Δt
s
eqω,t+Δt = s

eq̂ω,t +
s
eq̇ω,t+ΔtΔt

(2)

where Δt is the sampling time and s
eq̂ω,t is the previous

orientation estimation represented by unit quaternion, which
can also be obtained by using iterative equations (2).
B. Fast Gauss-Newton Algorithm for Vector Observations

1) Problem Description: Since the accelerometer and
magnetometer can measure the absolute orientation against
the earth, the orientation from their measurements could
be computed using a fast convergence approach called the
Gauss-Newton optimization algorithm (GNA). Given their
normalized reference directions in the earth frame (eza =
[0 0 0 1] for the accelerometer and ezm,t = [0 m̃x m̃y m̃z]
for the magnetometer) and their normalized measurements
shown in (3), the problem for finding the unit quaternion s

eq̂t
based on sAt =

sam
t

‖sam
t ‖

= [0 ax,t ay,t az,t ]

sMt =
smm

t

‖smm
t ‖

= [0 mx,t my,t mz,t ]

(3)

the GNA can be modeled as follows:
f ind : s

eq̂t = [q̂0 q̂x q̂y q̂z]

minimize : f (s
eq̂t) = 1

2 ε(s
eq̂t)

T ε(s
eq̂t)

where : ε =

{
εa(

s
eq̂t) = s

eq̂t ⊗
eza ⊗

s
eq̂∗t −

sAt

εm(s
eq̂t) = s

eq̂t ⊗
ezm,t ⊗

s
eq̂∗t −

sMt

sub ject to : s
eq̂t ∈ R

4 and s
eq̂t

s
eq̂T

t = ‖s
eq̂t‖

2 = 1
where f is the cost function, defined as the square of the
error function ε = [εa εm]T which combines εa from the
accelerometer and εm from the magnetometer together. It
can be represented as follows:

ε(s
eq̂t) =⎡

⎢⎢⎢⎣
2(q̂xq̂z−q̂0q̂y)−ax,t

2(q̂0q̂x+q̂yq̂z)−ay,t

2(0.5−q̂2
x−q̂2

y)−az,t

2m̃x(0.5−q̂2
y−q̂2

z )+2m̃y(q̂0q̂z+q̂xq̂y)+2m̃z(q̂xq̂z−q̂0q̂y)−mx,t

2m̃x(q̂xq̂y−q̂0q̂z)+2m̃y(0.5−q̂2
x−q̂2

z )+2m̃z(q̂0q̂x+q̂yq̂z)−my,t

2m̃x(q̂0q̂y+q̂xq̂z)+2m̃y(q̂yq̂z−q̂0q̂x)+2m̃z(0.5−q̂2
x−q̂2

y)−mz,t

⎤
⎥⎥⎥⎦

2) Fast Gauss-Newton Algorithm: According to the
above-mentioned formulated problem, the conventional GNA
consists of the following optimization steps:

s
eq(k + 1)
= s

eq̂(k)− (J(k)T J(k))−1J(k)T ε(s
eq̂(k))

(k = 0,1,2, · · · ,n)

(4)

where k is an iteration number and J(k) is the Jacobian of
ε . Actually, (4) can be rewritten as shown in (5).

s
eq̂(n + 1)

= s
eq̂(0)−

n

∑
k=0

(J(k)T J(k))−1J(k)T ε(s
eq̂(k))

= s
eq̂(0)−λk(J(0)T J(0))−1J(0)T ε(s

eq̂(0))

(5)

s
eq̂(n+1) is actually the final optimal orientation at time t +

Δt, denoted by s
eq̂a,t+Δt and s

eq̂(0) is the previous orientation

estimation at time t, denoted by s
eq̂ f ,t . λk will change with

every iteration to an optimal value. In fact, it is acceptable to
compute one iteration per time period as long as λt+Δt , which
guarantees the convergence rate of s

eq̂a,t+Δt , is restricted to
the physical orientation rate s

eq̇ω,t+Δt from the gyroscope as
this avoids overshooting due to an unnecessary large step
size. Therefore, (5) can be simplified as (6) with only one
iteration and an optimal value of λt+Δt can be calculated as
equation (7), which is defined the same as μt in [4].

s
eq̂a,t+Δt = s

eq̂ f ,t−

λt+Δt(J(s
eq̂ f ,t)

T J(s
eq̂ f ,t))

−1J(s
eq̂ f ,t)

T ε(s
eq̂ f ,t)

= s
eq̂ f ,t −λt+Δt

Δq̂
‖Δq̂‖

(6)

λt+Δt = α‖s
eq̇ω,t+Δt‖Δt, α > 1 (7)

where α is an augmentation of λ to account for noise in the
accelerometer and magnetometer.
C. Adaptive-Gain Complementary Filter

As described in [5], a complementary filter is mainly
designed for two noise sources with complementary spectral
characteristics, so the idea is to pass the accelerometer
and magnetometer signals through a low-pass filter and the
gyroscope signals through a high-pass filter and combine
them to give the final rate. The proposed filter combines
the advantage of the complementary filter and kalman filter,
where time-variant parameters kt and (1− kt) are set as the
weights of each orientation for more robust results compared
with the convention complementary filter, denoted as (8). The
gain kt is adaptively adjusted by using the convergence rate
λt
Δt of low-frequency s

eq̂a,t from vector observations based on
the GNA and the divergence rate β of high-frequency s

eq̂ω,t
from the gyroscope, shown as group 3 in Figure 2.

s
eq̂ f ,t = kt

s
eq̂a,t +(1− kt)

s
eq̂ω,t , 0 ≤ kt ≤ 1 (8)

Based on the same concept proposed in [4], the final orien-
tation estimation can be obtained using (9).

s
eq̂ f ,t+Δt = s

eq̂ f ,t +
s
eq̇ f ,t+ΔtΔt

s
eq̇ f ,t+Δt = s

eq̇ω,t+Δt −β s
eq̇ε,t+Δt

s
eq̇ε,t+Δt =

Δq̂
‖Δq̂‖

(9)

where s
eq̇ f ,t+Δt is the estimated orientation rate, which can be

calculated as the rate of change of orientation measured by
the gyroscope, s

eq̇ω,t+Δt , with the magnitude of the gyroscope
measurement error (usually zero-mean error), β , removed
in the direction of the estimated error, q̇ε , computed from
accelerometer and magnetometer measurements. β can be
obtained using the method in [4].
D. Compensation Schemes

1) Gyroscope Bias Drift Compensation: With the disad-
vantage of accumulated drift over long-time tracking, s

eq̇ε is
also used for the gyroscope bias drift compensation derived
as the inverse to the relationship defined in (1). So the angular
error sωe, angular bias sωb, and angular velocity sωc after
compensation in each gyroscope axis can be expressed in
(10) by using the normalized direction of q̇ε , shown as Group
2 in Figure 2.

sωe,t+Δt = 2s
eq̂∗f ,t+Δt ⊗

s
eq̇ε,t+Δt

sωb,t+Δt = ζ ∑t+Δt
sωe,t+Δt Δt

sωc,t+Δt = sωt+Δt −
sωb,t+Δt

(10)
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Fig. 2. The block diagram of the AGOF design for MARG sensors.
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(a) The top view and its frame (b) Illustration of Test I
Fig. 3. Prototype design for MARG sensor and experimental illustration.

where ζ accounts for the rate of convergence to remove
non-zero-mean gyroscope measurement errors, which can be
similarly determined as β .

2) Accelerometer and Magnetometer Compensation: In
order to select the best reliable vectors among the sensor
measurements as inputs to the filter, accelerometer and mag-
netometer measurements should be compensated, especially
within fast motion and temporary magnetic disturbances. The
input vectors sA and sM for the GNA can be compensated
using the following criteria, which are similarly used in [6],
but more robust with the adaptive reference vector selection
for Earth’s magnetic field, are implemented in this paper.

sAt =

⎧⎨
⎩

sam
t

‖sam
t ‖

, if |‖sam
t ‖−‖g‖| ≤ εa

s
eq̂∗t−Δt ⊗

eza ⊗
s
eq̂t−Δt , otherwise

ezm,t =

⎧⎨
⎩

smm
t=0

‖smm
t=0‖

, if |‖smm
t ‖−‖mt=0‖| ≤ εm

s
eq̂t−Δt ⊗

sMt−Δt ⊗
s
eq̂∗t−Δt , otherwise

sMt =

⎧⎨
⎩

smm
t

‖smm
t ‖

, if |‖smm
t ‖−‖mt=0‖| ≤ εm

s
eq̂∗t ⊗

ezm,t ⊗
s
eq̂t , otherwise

III. EXPERIMENTAL VALIDATION AND RESULTS
A. Experimental Validation

To verify the proposed algorithm, a newly small MARG
platform is developed shown in Figure 3(a). The RMS (Root
Mean Square) is chosen as the criterion to evaluate the
accuracy of the proposed AGOF method. A Vicon system
[7] was used as ground truth, and three other well-known
algorithms were used to compare with the proposed AGOF,
which include the KF(Kalman-based Filter), FQA (Factored
Quaternion Algorithm) proposed in [8], and GDA (Gradient
Descent Algorithm) proposed in [4]. The magnetic distor-
tion, which will affect not only the magnitude but also
the orientation of the magnetic field, can be generated by
swaying a magnetic iron, shown in Figure 3(b). The filter
gains for the complementary filter, and the threshold values
in the vector selections were set as: β = 0.0756, ζ = 0.003,
εa = 0.25m/s2, and εm = 0.02Guass.

TABLE I

STATIC AND DYNAMIC ACCURACY OF METHODS FROM THE AGOF, KF,

GDA AND FQA (MD:MAGNETIC DISTORTION).
Euler angles \ Methods AGOF KF GDA FQA

RMS[Roll] Static without MD : 0.2316◦ 0.7890◦ 0.5811◦ 1.2311◦

RMS[Roll] Static with MD: 0.2910◦ 8.2316◦ 9.1831◦ 9.4256◦

RMS[Roll] Dynamic: 0.6645◦ 3.8695◦ 2.8252◦ 12.5791◦

RMS[Pitch] Static without MD : 0.2664◦ 0.8191◦ 0.5023◦ 1.3813◦

RMS[Pitch] Static with MD: 0.2742◦ 8.5142◦ 9.2472◦ 9.0811◦

RMS[Pitch] Dynamic: 0.6018◦ 3.3471◦ 2.6680◦ 13.2781◦

RMS[Yaw] Static without MD : 0.5322◦ 1.1572◦ 1.0734◦ 1.5193◦

RMS[Yaw] Static with MD: 0.9496◦ 11.1532◦ 10.5811◦ 20.8124◦

RMS[Yaw] Dynamic: 0.8182◦ 8.5451◦ 10.1101◦ 15.1125◦

Real-time Tracking Yes No Yes No

Gyro Drift Compensation Yes No Yes No

MD Compensation Yes No Yes No

Accelerometer Compensation Yes No No No

B. Experimental Results

1) Test I: No Movement with Magnetic Disturbances:
In this test scenario, the sensor arrays kept still and a
magnetic shown in Figure 3(b) was swayed around the sensor
intermittently. The magnetic disturbances for 3 axes were
clearly shown in Figure 5(f), marked in the red area. Figure
5(a) shows the Euler angles which were calculated from
the GDA(black dash-dotted), KF(purple dotted), FQA(green
line), and AGOF(blue dashed).

2) Test II: Slow Movement within a Magnetically Ho-
mogeneous Environment: This test involved three typical
motions (single roll, pitch and yaw movements) and the
results from the Vicon system were used as the ground
truth to test the accuracy of the proposed method. Figure
4 shows the measured and estimated angles in upper plot
and estimated errors in lower plot.

3) Test III: Sudden Fast Movement within a Magnetically
Homogeneous Environment: In Test III, the MARG sensor
went through a sudden acceleration[see Figure 5(e) in red
area]. Figure 5(b) shows that the proposed AGOF offered
more accurate estimation than the GDA , KF, and FQA.

4) Gyroscope Bias Drift Estimation with Magnetic Dis-
turbances for Test I: Figure 5(c) shows the estimated bias
results for three axes of the gyroscope using the proposed
AGOF and the GDA proposed by Madgwick within magnetic
disturbances, plotted against the actual gyroscope measure-
ments.

5) Static and Dynamic Accuracy: The static and dynamic
RMS error values of Euler angles were calculated based on
Test I, II and III to test the accuracy of the proposed AGOF,
KF, GNA, and FQA. For the static accuracy, it was evaluated
with and without magnetic distortion. Table I shows three
Euler angles’ RMS errors of static and dynamic movements
from four methods.

6) Real-time Orientation Visualization and Motion Cap-
ture of Human Upper Limb: Figure 6(a) shows a 3D coor-
dinate system (Red-X axis, Green-Y axis and Blue-Z axis)
demonstration of real-time orientation tracking estimated by
the newly developed MARG sensor. The 3D visualization is
illustrated on the user PC by using the OpenGL. Figure 6(b)
shows the real pose of the upper limb and the visualization
of its estimation by MARG sensors.
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(c) Yaw angle
Fig. 4. Results for measured and estimated angle (top) and error (bottom).
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Fig. 5. Results for Test I, III and Gyro bias using the proposed AGOF compared with the GDA, KF, and FQA.

(a) Real-time visualization

(b) Motion capture
Fig. 6. (a)The real-time 3D orientation visualization of MARG sensor:
(1)initial position; (2)rotating around Y axis; (3)rotating around X axis;
(4)rotating around Z axis; (5)Random rotating around X, Y and Z axis
together; (6)static demonstration with strong magnetic distortion.(b)Motion
capture of human upper limb. On the right side of each photograph: a user
wearing the MARG sensors is moving his upper limb. On the left side: the
real-time reconstruction of the movements and shadows of human upper
limb in each plane.

IV. CONCLUSION

This paper presented an adaptive-gain orientation filter
(AGOF) with adaptive vector selections designed for real-
time human motion tracking in free-living environments.
In particular, the proposed method is effective at handling
severe magnetic distortion and high dynamic movement with
the compensation schemes for each sensor. The RMS error

of the estimated orientation is less than two degrees. Due to
its high computational efficiency and accuracy, the proposed
algorithm can be potentially implemented in a network
of miniature MARG sensors for human body movement,
forming a truly portable and ambulatory motion tracking
system. This paper demonstrated the human-upper-limb-
motion-capture using the proposed method, and the results
also illustrated the high accuracy.
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