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Abstract— Cortical activity can be estimated from electroen-
cephalogram (EEG) or magnetoencephalogram (MEG) data by
solving an ill-conditioned inverse problem that is regularized us-
ing neuroanatomical, computational, and dynamic constraints.
Recent methods have incorporated spatio-temporal dynamics
into the inverse problem framework. In this approach, spatio-
temporal interactions between neighboring sources enforce a
form of spatial smoothing that enhances source localization
quality. However, spatial smoothing could also occur by way
of correlations within the state noise process that drives the
underlying dynamic model. Estimating the spatial covariance
structure of this state noise is challenging, particularly in EEG
and MEG data where the number of underlying sources is far
greater than the number of sensors. However, the EEG/MEG
data are sparse compared to the large number of sources, and
thus sparse constraints could be used to simplify the form of
the state noise spatial covariance. In this work, we introduce
an empirically tailored basis to represent the spatial covariance
structure within the state noise processes of a cortical dynamic
model for EEG source localization. We augment the method
presented in Lamus, et al. (2011) to allow for sparsity enforcing
priors on the covariance parameters. Simulation studies as well
as analysis of real data reveal significant gains in the source
localization performance over existing algorithms.

I. INTRODUCTION

Among the different non-invasive techniques that can
be used to study the functionality of the human brain
in healthy and diseased subjects, Magnetoencephalography
(MEG) and Electroencephalography (EEG) stand out due to
their high temporal resolution. They can observe dynamics
on a time-scale of milliseconds, reflecting synchronous ac-
tivity most likely from pyramidal cells within the cerebral
cortex. MEG and EEG can therefore provide a dynamic
characterization of brain activity that is not possible with
slower indirect modalities such as functional magnetic res-
onance imaging (fMRI) or positron emission tomography
(PET) [1]. EEG/MEG source localization requires solution
of an ill-conditioned neuromagnetic inverse problem where
neuroanatomical, computational, and dynamic constraints are
used to arrive at a unique solution. Recent methods have
employed spatiotemporal dynamic models based on neuro-
physiological knowledge, resulting in improved estimation
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efficiency and spatial localization compared to static methods
[2]–[4]. The accuracy of these dynamic methods is strongly
influenced by how well the dynamics of the underlying brain
current sources is approximated by the state-space model [5].

In this work, we aim to extend the MEG source local-
ization framework developed in [2] to cover EEG. Due to
the lower number of sensors typically recorded in EEG
compared to MEG, as well as other differences in the
inherent characteristics of these two modalities of recording,
such an extension presents several challenges. In particular,
the characterization of the observation noise model for EEG
requires care, whereas in MEG, the observation noise can be
well modeled using empty room measurements [2]. More-
over, the assumption of spatially-independent state noise
components used in [2] for MEG source localization may be
less appropriate for EEG due to its lower spatial resolution.

In order to address these issues, we propose an empiri-
cally tailored basis to model the spatial covariance of the
state noise processes. The resulting state-space model uses
the topology of the source space to allow spatial correla-
tions in the state noise process within local neighborhoods.
We incorporate sparsity-enforcing priors into the estimation
framework to account for sparsity in the spatial covariance
structure. Simulation studies, as well as analysis of real
EEG data, confirm significant improvements over traditional
methods for EEG source localization.

II. METHODS

A. State-Space Model for EEG

EEG recordings provide a measure of the electric field
generated by the cortical pyramidal cells at the locations
of the sensors distributed on the scalp. Let yi,t denote the
signals recorded by sensor i at time t for all i = 1,2, ...,Ny

and t = 1,2, ...,T . Let yt := [y1,t ,y2,t , ...,yNy,t ]
′

be the Ny×1
vector of observations at time t. The EEG signal arises from
the primary and secondary current distributions in the brain,
which can be well approximated by a collection of current
dipoles distributed perpendicularly on the cortical surface
[1]. Let xi,t denote the source amplitude of the dipole i
at time t for all i = 1,2, ...,Nx and t = 1,2, ...,T , and let
xt := [x1,t ,x2,t , ...,xNx,t ]

′
be the Nx×1 vector of dipole sources

representing the cortical activity at time t. A typical value
of Ny is in the range of 32∼256, whereas Nx can be as high
as ∼300000. The observation process can be modeled as:

yt = Gxt + vt , (1)

where G is an Ny × Nx matrix representing the sensing
process and vt is the Ny × 1 vector of background and
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Fig. 1. Pre-frontal simulation results for sMAP-EM (2nd column), dMAP-EM (3rd column), BdMAP-EM (4th column), `1-BdMAP-EM (5th column)
methods at two different time instants: a peak (upper panels) and a zero (bottom panels) of the sinusoidal wave. The first left column shows the simulated
activity. The color-bar’s maximum (bright yellow) and minimum (bright blue) correspond to ±0.80 nAm for all methods. The right section of the figure
shows a zoomed-in view of the cortical activity obtained in the `1-BdMAP-EM method, where green dots are representative dipoles labeled A (inside the
simulated area), B (inside the simulated area), and C (outside the simulated area). The upper left panels in magenta show the estimated time course of the
sMAP-EM method. The bottom left panels in green show the dMAP-EM estimates. The upper right panels in red show the estimated time trace of the
BdMAP-EM method and the estimates of the `1-BdMAP-EM method are reported in the bottom right panels in blue. In all panels the black line represent
the time course of the simulated activity.

instrumental noise. The matrix G is a linear map from
the neuronal currents to the electric signal recorded by the
sensors [6]. The noise vector vt captures all the uncertainties
independent of xt and can be modeled by a Gaussian random
vector of mean zero and covariance matrix C.

The dipole activity can be represented by a spatio-temporal
dynamic process based on the underlying neurophysiology
[2], as follows:

xn,t = λ [anxn,t−1 +(1−an) ∑
i∈N1(n)

dn,ixi,t−1]+wn,t , (2)

where N1(n) denotes the set of the nearest neighbors of the
nth dipole source, dn,i is the normalized inverse distance
between dipoles n and i, an ∈ [0,1] is a weighting factor, λ is
a positive scalar ensuring the stability of the autoregressive
model, and wt is the source regeneration process. Equation
(2) can be expressed in the following compact form:

xt = Fxt−1 +wt , (3)

where the Nx×Nx matrix F captures the spatial portion of
the spatio-temporal autoregressive model. The state noise
process modeled by wt := [w1,t ,w2,t , ...,wNx,t ]

′
represents the

temporal innovations of the sources beyond those that can
be accounted from local cortical interactions. This process
can be approximated by a Gaussian process with covariance
matrix Qt , independent of the measurement noise vt . In [2]
the covariance Qt was restricted to a diagonal structure. We
extend the structure of Qt by allowing off-diagonal elements
in order to capture the spatial dependency in the source
regeneration process. Let B an Nx×Nx matrix with elements:

(B)n,i =


1 if n = i

δ1dn,i if i ∈ N1(n)
δ2dn,i if i ∈ N2(n)

0 otherwise

, (4)

where N1(n) and N2(n) denote the set of first and second
nearest neighbors of the dipole n, respectively, and δ1 and

δ2 are positive scaling constant. Let {b1,b2, ...,bNx} denote
the set of eigen-vectors of B, and let {q1,q2, ...,qNx} be the
corresponding orthonormal basis spanning the range of B.
We consider the class of covariance matrices Qt that lie in
the span of this basis, i.e.,

Q =
Nx

∑
n=1

θn,tqnq′n, (5)

where θn,t are the expansion coefficients.
Suitable priors must be chosen for the parameters θn,t in

this model. One choice would be to use the conjugate density
of the observation likelihood, which in this case is given by
the inverse gamma density [2]:

p(θ) =
Nx

∏
n=1

β α

Γ(α)

( 1
θn

)a+1
exp
(−β

θn

)
. (6)

The parameters α and β are tuned so that the resulting prior
matches the scale of the observation data while remaining
non-informative. Alternatively, if we assume that the covari-
ance matrix Qt has a compact representation in the basis
{q1,q2, ...,qNx}, we can also assume a sparsity enforcing prior
on the expansion coefficients θn,t [7]. One such prior is given
by the Laplacian distribution density:

p(θ) = γ
Nx

Nx

∏
n=1

exp(−γθn), (7)

where the parameter γ is tuned in order to maintain the
appropriate scaling of the expansion coefficients with the
observation data.

B. Inference with Maximum a Posteriori Expectation-
Maximization algorithm

Although all the parameters in the state-space and ob-
servation model have uncertainties, some of them can be
approximated by their fixed a priori estimates based on
neurophysiological knowledge. First of all, the lead field
matrix G can be computed using a quasi-static approxi-
mate solution to the Maxwell’s equations [6]. Secondly, the
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Fig. 2. ROC curves from simulated activity in the pre-frontal area
computed by determining the relationship between the detection probability
and the false alarm probability at varying thresholds for the null hypothesis.
Therefore, the detection probability is given by the fraction of events where
the active source was correctly detected for a given threshold. Similarly,
the estimate of false alarm probability is given by the proportion of events
falsely detected, again for a given threshold (See [2] for details). In the
right panel a zoomed-in view of the right corner of the ROC curves, with
detection probability 0.7-1 and false alarm probability 0-0.3.

measurement noise covariance C can be reliably estimated
from pre-stimulus baseline EEG recordings. The expansion
coefficients θt = [θ1,θ2, ...,θT ]

′ with θi := [θ1,i,θ2,i, ...,θNx,i]
′

for all i = 1,2, ...,T , are the unknown model parameters that
can be obtained by a Maximum a Posteriori (MAP) estimator
θ̂t,MAP := argmax

θt

p
(
θt |{yt}T

t=1
)
, where p(θt |{yt}T

t=1) is the

posterior density of the parameters θt conditioned on the
full set of measurements {yt}T

t=1. The empirical Bayesian
estimate of the source amplitudes, i.e., the conditional mean
of the state vector given the full set of measurements {yt}T

t=1
and an estimate θ̂t,MAP of the model parameters, is denoted
by xt|T := E(xt |{yt}T

t=1, θ̂t,MAP), where the notation in the
subscript of xt|T indicates that the conditioning at time t
is on the full set of measurements from time 1 to T . We
use the Expectation-Maximization (EM) algorithm to obtain
Maximum a Posteriori estimates [8]. The E-step is carried
out using the Kalman Filter [9] and Fixed Interval Smoother
algorithms [10], which also provide the empirical Bayesian
estimate of the source amplitudes at the final EM iteration.

It is easy to show that the M-step of the EM algorithm
results in the following update equations for the model
parameters,

θ
(r)
n,t =

tr
{

qnA(r)q′n
}
+2β

T +(2α +1)
, and (8)

θ
(r)
n,t =

√
T 2 +8tr

{
qnA(r)q′n

}
γ−T

4γ
, (9)

respectively for the conjugate prior (8) and the Laplacian
prior (9), where A(r) is a matrix that can be explicitly
calculated using the covariance estimates obtained by the
Kalman filter and the Finite Interval Smoother (See [2] for
details). The iterations are repeated until the logarithm of the
posterior density reaches an asymptote.

C. Simulation Studies and initialization of the parameters

We analyzed simulated data, as well as real data recorded
from a human subject, to compare the performance of

four different source localization methods: the static MAP-
EM (sMAP-EM) [2], the dynamic MAP-EM (dMAP-
EM) [2], the dMAP-EM with the spatial covariance basis
(BdMAP-EM), and the BdMAP-EM with the Laplacian prior
(`1-BdMAP-EM). For the simulated data, we chose an active
region in the pre-frontal area of the left hemisphere. We
simulated cortical activity on a density sampled source space
of ∼300000 dipoles. The time course of the sources in the
active region was fixed at a 10 Hz sinusoidal oscillation over
a period of 1 second with a sampling frequency of 200 Hz.
The lead field matrix was computed with the MNE software
[6] using a realistic 3-layer boundary element method (BEM)
from the MRI of a human subject. The observation model
given by (1) was used to obtain the simulated EEG record-
ings on 64 sensors. The measurement noise was additive
Gaussian with covariance empirically estimated using the
MNE software [6] from real EEG data. The simulated dipole
amplitudes were scaled uniformly across the active region to
achieve a signal-to-noise-ratio (SNR) of 3. This value was
chosen to be consistent with empirical estimates of SNR from
real data. We employed a source space of Nx = 1282 dipoles
perpendicular to the cortical surface, with an average spacing
of 1.25 cm. However, the model can be easily extended to
finer source spaces with unconstrained source orientations.
The active region was composed of ∼3000 dipoles in the
densely-sampled source space. The parameters of the matrix
F were set to an = 0.7 and λ = 0.95 to improve stability.
Finally, the parameters of the covariance basis were set to
δ1 = 0.5 and δ2 = 0.25.

For the analysis of the real data, we applied the
sMAP-EM, dMAP-EM, BdMAP-EM, and `1-BdMAP-EM to
alpha-rhythms elicited during an eyes-open/eyes-closed task
recorded using a 64-lead EEG cap from a human subject.
The alpha-rhythm is a 10 Hz oscillation originating from the
occipital lobe during wakeful relaxation with eyes-closed.
The subject was instructed to open and close his or her eyes
periodically over a few minutes time. The data were recorded
at a sampling frequency of 5 kHz, down-sampled to 200 Hz
and filtered in the band of 0.1–50 Hz off-line.

III. RESULTS

Figure 1 shows the spatial distribution of the simulated
activity in the pre-frontal area at two different time instants:
the peak and the zero of the sinusoidal wave respectively
in the upper and in the lower panels. The sMAP-EM (2nd
column from the left) produces an estimate that appears
more focal than the true active region. The dMAP-EM (3th
column) yields a dipole source estimate with a spatial spread
comparable to that of the true active region. The BdMAP-
EM (4th column) improves over the dMAP-EM in terms of
the spatial spread. Finally, the `1-BdMAP-EM (5th column),
which employs the sparsity enforcing prior, provides an
estimate with a spatial spread comparable to the dMAP-EM.
Interestingly, the `1-BdMAP-EM is the only method which
captures the absence of activity at the zero of the sinusoidal
wave (5th column lower panel).
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Fig. 3. Analysis of human EEG alpha-rhythm. The color-bar’s maximum (bright yellow) and minimum (bright blue) correspond to ±0.20 nAm for the
eyes-closed (left panels) and to ±0.03 nAm for eyes-open (right panels). The left part of the figure shows a zoomed-in view of the cortical activity obtained
in the dMAP-EM method (eyes-closed), where the green dot is a representative dipole of the alpha-rhythm. The time course of the estimations at the green
dot is shown for eyes-closed (bottom panel) and eyes-open (upper panel). The sMAP-EM is shown in magenta, the dMAP-EM in green, the BdMAP-EM
in red, and the `1-BdMAP-EM in blue. The units are different for the two panels (1e-10 Am for the upper panel and 1e-09 Am for the bottom one).

The figure also shows the time series estimates obtained
by the four methods at a few different dipoles (two in-
side and one outside the active region). The sMAP-EM
provides the best tracking performance outside the true
region, but performs poorly inside the area of activity. The
other three methods track the time course within the active
region with higher precision, but tend to overestimate the
activity outside. Among the three dynamic methods, the
`1-BdMAP-EM suppresses the estimate outside the active
region the most. The correspondence between the simu-
lated sources and their estimates are evaluated by the root
mean square error (RMSE) performance of each method
inside and outside the active region. The sMAP-EM exhibits
the poorest error performance with an average RMSE of
20.1 nAm inside the active region. The average RMSE of
the estimates obtained by the dMAP-EM, BdMAP-EM, and
`1-BdMAP-EM inside the active area are given by 19.5 nAm,
18.2 nAm, and 19.8 nAm respectively. On the other hand,
the `1-BdMAP-EM performs the best outside the active
region with an average RMSE 100 pAm, which is consistent
with the observed time tracings. The average RMSE for
the sMAP-EM, dMAP-EM, and BdMAP-EM are 105 pAm,
148 pAm, and 150 pAm, respectively.

In order to evaluate the sensitivity/specificity tradeoff of
the source localization methods, we calculated the receiver
operating characteristic (ROC) curve as is shown in Fig.2.
The sMAP-EM (magenta) exhibits the lowest initial slope
and smallest area-under-the-curve (AUC), requiring a high
false alarm rate to achieve a reasonable detection rate. The
ROC curves of the dMAP-EM (green), BdMAP-EM (red),
and `1-BdMAP-EM (blue), however, indicate that these three
methods outperform the sMAP-EM. In particular, the dMAP-
EM and the `1-BdMAP-EM provides the largest AUC (about
0.97) as well as the highest initial slope.

The performance of the four algorithms on the real data
is summarized in Fig.3. The overall performance of the
dynamic algorithms in recovering the alpha waves in the oc-
cipital lobe during the eyes-closed/eyes-open phase are better
than that of the sMAP-EM. In particular the `1-BdMAP-EM

suppressed the amplitude of the estimate the most during the
eyes-open phase (i.e., where alpha activity should be absent).

IV. CONCLUSION

We have proposed a novel state-space model for cortical
activity that incorporates the local spatial correlations within
an underlying state noise process. A sparsity enforcing prior
was used to estimate the model parameters for EEG source
localization. Simulation studies as well as the analysis of
real data reveal significant performance gains provided by
this algorithm in terms of source localization quality over
the existing algorithms. Generalizations to broader classes
of source spaces and models, as well as improvements in
the computational complexity, are currently under study.
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