
 

Abstract—Recent dynamic source localization 

algorithms for the Magnetoencephalographic inverse 

problem use cortical spatio-temporal dynamics to 

enhance the quality of the estimation. However, these 

methods suffer from high computational complexity due 

to the large number of sources that must be estimated. In 

this work, we introduce a fast iterative greedy algorithm 

incorporating the class of subspace pursuit algorithms 

for sparse source localization. The algorithm employs a 

reduced order state-space model resulting in significant 

computational savings. Simulation studies on MEG 

source localization reveal substantial gains provided by 

the proposed method over the widely used minimum-

norm estimate, in terms of localization accuracy, with a 

negligible increase in computational complexity.  

  

I. INTRODUCTION 

 

 Magnetoencephalograpy (MEG) and Electroencepha-

lography (EEG) provide measurements of scalp 

electromagnetic fields generated by cortical currents that 

reflect neuronal activity at a millisecond time scale [1,2]. 

However, due to the ill-posed nature of the underlying 

electromagnetic inverse problem, both MEG and EEG are 

unable to uniquely localize the generators of this brain 

activity.  Established methods for MEG source localization, 

such as the minimum-norm estimate (MNE) [3,4], use a 

Bayesian prior constraint to overcome non-uniqueness and 

provide instantaneous and independent estimates for each 

time point. These methods are computationally efficient, but 

they tend to yield blurred estimates of cortical activity and 

do not incorporate temporal continuity, which is inherent to 

the biophysics of the problem. Dynamic source localization 

methods using an approximation to the Kalman Filter [5], or 

the Fixed Interval Smoother [6] have been proposed 

previously. A recent method described by Lamus et al. [7] 

used temporal continuity and neighborhood interaction 

constraints, alongside an empirical Bayesian algorithm to 

estimate model parameters in order to improve the spatio-

temporal accuracy of the source estimates compared to 

standard methods. 
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However, this method is computationally costly, due to the 

Expectation Maximization (EM) algorithm it uses to perform 

parameter estimation [7]. More generally, these dynamic 

algorithms do not take into account the sparse nature of 

brain activity. 

In this work, we incorporate techniques from sparsity-

based signal processing into the framework of EEG/MEG 

source localization. In particular, we develop a fast, greedy 

algorithm for brain source localization based on the class of 

subspace pursuit (SP) algorithms [8,9]. SP algorithms search 

for sparse solutions to an under-determined system of linear 

equations in a greedy [10] fashion by iteratively refining the 

subspace containing a potential solution. The refinement is 

carried out iteratively based on a proxy signal obtained from 

the observation vector. A traditional densely sampled source 

space (~300,000 sources) is recursively subdivided into 

Voronoi regions of decreasing size, and given a target 

sparsity level, the overall algorithm searches for sparse 

solutions across the hierarchy of source spaces in a nested 

fashion; Voronoi regions are denoted by spatially compact 

cortical patches whose lead field mappings are represented 

by their first few significant eigen-modes [11]. 

We perform numerical studies of MEG source localization 

using simulated data (generated using realistic MRI-based 

head models) within various spatially distributed active 

regions. These studies reveal significant improvements in 

both the computational requirements and localization 

accuracy. For instance, for a given patch with diameter of 

~13 mm located over a relevant brain region, with uniform 

source amplitudes of 10 nAm, and signal-to-noise ratio 

(SNR) of ~6 dB, our method recovers 100% of the signal 

power within a small neighborhood of the active region, 

whereas the MNE only recovers 5% of the power under the 

same setting. 

 

II. METHODS 

 

A. MEG State-Space Model 

 

  We use a distributed source model to represent the set of 

possible currents underlying the observed MEG 

measurements.  Given a source space 𝑆 of size 𝑀 and a total 

of N sensors, such a model can be expressed as follows: 

 

 𝑦𝑡 = 𝐺(𝑆)𝑥𝑡 + 𝑣𝑡 ,  (1) 
 

where 𝑦𝑡 refers to the 𝑁 ×  1 observation vector at time 𝑡, 𝐺 

is the 𝑁 ×  𝑀  lead field matrix (assuming fixed source 

orientation normal to the cortical surface) computed from 

structural MRI data [12], 𝑥𝑡  is the 𝑀 ×  1 state vector, and 

𝑣𝑡  is the 𝑁 ×  1 zero mean Gaussian noise vector with 
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covariance matrix 𝐶 . In Eq. (1) we have parametrized the 

lead field matrix by 𝑆 , which corresponds to the set of 

discrete locations in the brain where the currents 𝑥𝑡 need to 

be estimated. It should be noted that the set 𝑆, and hence the 

columns of 𝐺(𝑆), are dependent upon the sampling density 

used to represent the source space. Also, since 𝑀 ≫ 𝑁, the 

linear equation lacks a unique solution in general. 

We assume that the currents 𝑥𝑡  follow a random-walk 

model: 

 xt = Fxt−1 + wt , (2) 
 

where the state transition matrix 𝐹  represents the state 

dynamics, and 𝑤𝑡  is a 𝑀 ×  1 zero mean Gaussian random 

vector with covariance matrix 𝑄 = 𝑑𝑖𝑎𝑔(𝜎1
2, 𝜎2
2, … , 𝜎𝑀

2 ) . 

Each 𝜎𝑖
2 , for 𝑖 = 1,… ,𝑀 , corresponds to an unobserved 

realization from an inverse-gamma distribution, which is 

chosen as the prior. The initial value 𝑥0 is assumed to be a 

Gaussian vector with mean 𝜇 and covariance matrix Σ. Eq. 

(1) and (2) define the MEG state-space model. 

 

B. Reduced Order State-Space Model: Cortical Patch 

Decomposition 

 

Consider the Voronoi regions, or patches 𝑃1, 𝑃2, … , 𝑃𝐾 , 

induced by the Euclidian norm from a source space of size 𝐾 

over the densely-sampled source space 𝑆. Thus, each patch 

will contain a subset of 𝑆, i.e., if 𝑆𝑟 is the set of discretized 

sources within patch 𝑃𝑟 , then: 

 

 ⋃  𝑆𝑟𝐾
𝑟=1 = 𝑆 , (3) 

 

and the observation model given in (1) can be rewritten as: 

 

 𝑦𝑡 = [𝐺
1 𝐺2  ⋯ 𝐺𝐾] 

[
 
 
 
𝑥𝑡
1

𝑥𝑡
2

⋮
𝑥𝑡
𝐾]
 
 
 
+  𝑤𝑡 , (4) 

 

where 𝐺𝑟 ∶= 𝐺(𝑆𝑟) and 𝑥𝑡
𝑟 ∶= 𝑥𝑡(𝑆

𝑟), for 𝑟 = 1,… , 𝐾 , are 

the lead fields and sources corresponding to the disjoint 

patches whose union covers all 𝑆, respectively (with possible 

reordering of the columns of 𝐺(𝑆) defined in (1)). Thus, 𝐺𝑟  
will contain a subset of the columns of 𝐺, and 𝑥𝑡

𝑟 will refer 

to the source amplitudes at discrete locations in patch 𝑃𝑟 . 
Depending on the patch size and the discretized source 

space density, the columns of 𝐺𝑟 , for 𝑟 = 1,… ,𝐾 , will be 

highly correlated and hence these matrices may be well 

approximated using a reduced rank representation. The 

reduced-order singular value decomposition (SVD) [13] of 

𝐺𝑟  can be expressed as: 

 

 𝐺𝑟 ≈   𝑈𝑟𝑁×𝑝𝐷
𝑟
𝑝×𝑝(𝑉

𝑟)
𝑝 × dim(𝑥𝑡

𝑟)
′  , (5) 

 

where 𝑈𝑟and 𝑉𝑟  are orthonormal matrices, 𝐷𝑟  contains the 

singular values arranged in decreasing order, and the value 

of   represents the number of significant eigen-modes 

chosen based on the mean representation accuracy criterion 

[11] across different patch sizes. 

For 𝑟 = 1,… , 𝐾, let   𝑡
𝑟 ∶= (𝑉𝑟)′𝑥𝑡

𝑟 , and, 

 

 𝕍 ∶= [
(𝑉1)′ 0 0
0 ⋱ 0
0 0 (𝑉𝐾)′

]

𝑝𝐾 ×∑ dim(𝑥𝑡
𝑟)𝐾

𝑟=1

.   (6) 

 

Then, the state and observation equations can be respectively 

written as: 

 

 𝑦𝑡  =   𝐺𝜃 𝑡 + 𝑣𝑡, (7) 
 θt  =  Fθθt−1 + 𝑤̃𝑡,  (8) 
where 

 𝐺𝜃 ∶= [𝑈
1𝐷1  𝑈2𝐷2  ⋯  𝑈𝐾𝐷𝐾],  (9) 

  𝑡 ∶= [( 𝑡
1)′ ( 𝑡

2)′  ⋯ ( 𝑡
𝐾)′]′,  (10) 

 𝐹𝜃 ∶=  𝕍𝐹𝕍
′, and (11) 

 𝑤̃𝑡 ∶= 𝕍𝑤𝑡 .  (12) 
 

Eq. (7) and (8) describe a reduced order MEG state-space 

model in which the dimension of the state vector  𝑡  is 

decreased from 𝑀 to  𝐾. For example, assume that the 4
th

 

recursive subdivision of an icosahedron is used to select a 

subset of 𝐾 ≈ 5000 sources over the original state vector 𝑥𝑡. 
If these in turn are used as the central vertices for 

constructing the Voronoi regions, and furthermore each 

patch is represented by its  = 2  most significant eigen-

modes,  𝑡 will lie in a space of dimension  10000 sources 

as opposed to the dimension of  300,000 (corresponding to 

the dimension of the original state vector 𝑥𝑡). This translates 

into a substantial decrease in the computational complexity 

of the inverse problem. 

 

C. Subspace pursuit 

 

We assume that the measured observations result from the 

superposition of compressible signals coming from a small 

number of non-overlapping patches. Under this premise, the 

pursuit algorithm searches for sparse estimates across a 

hierarchy of source spaces in a nested fashion, using the 

reduced order state-space model described above, and an 

extension of the MNE algorithm where the state noise 

covariance is iteratively updated via EM (sMAP-EM) [7].  

A total of  20  4𝑖 + 4 cortical patches with surface areas 

of approximately 100,000 (4𝑖  10 + 2)  mm
2
, for 𝑖 =

1,… ,5  representing the i
th

 recursive subdivision of an 

icosahedron, are independently formed over the original 

densely sampled source space. We denote these nested 

source spaces by 𝑆1, 𝑆2, … , 𝑆 , such that 𝑆1  𝑆2  ⋯𝑆 . Let 

𝐺𝜃
(𝑖)

 denote the reduced order lead field matrix over 

tessellation 𝑆𝑖 , and 𝐺̃𝜃
(𝑖)

 be equal to 𝐺𝜃
(𝑖)

 with normalized 

columns. The algorithm performs a series of SPs across the 

observation models induced by each 𝑆𝑖, identifying   sparse 

components of  , where   is a level of target sparsity chosen 

a priori. Over the source space 𝑆𝑖  with the observation 

model: 

 𝑦𝑡 = 𝐺𝜃
(𝑖) 𝑡
(𝑖) + 𝑣𝑡,  (13) 

 

the main steps of the SP algorithm are summarized below: 
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Table 1. Subspace pursuit algorithm 

Input: 

 , 𝐺(𝑖),   (𝑁 ×    matrix of observations, where   represents the 

total number of samples) 

Initialization: 

1) 𝑃0  {  indices corresponding to the rows of 𝐺𝜃
(𝑖)′
  

with largest  2-norm} 

2) Estimate  ̂
  
(𝑖)

 using sMAP-EM restricted to the index set 

𝑃0 

3)  𝑟
0    𝐺𝜃

(𝑖)
 ̂
  
(𝑖)

 

Iteration: At the kth iteration, go through the following steps: 

4) 𝑃̃  𝑃 −1  {  indices corresponding to the rows of 

𝐺̃𝜃
(𝑖)′
 𝑟
 −1 with largest  2-norm}  

5) Estimate using sMAP-EM restricted to the index set 𝑃̃  

6) 𝑃   {  indices corresponding to the rows of  ̂
𝑝 
(𝑖)

 with 

largest  2-norm} 

7)  𝑟
     𝐺𝜃

(𝑖)
 ̂
  
(𝑖)

 

8) If  𝑃 = 𝑃 , for some  = {  1,… ,0}, quit the 

iteration. 

Output: 

 𝑃  

 

 
 

Fig. 1. (a) Geometrical projection of the active region over the inflated 
cortical surface. (b-f) Progression of the SP algorithm estimates through 

low rank approximation of a series of nested source spaces. The 

intensity maps for each subfigure are created using the whole range of 
the estimated amplitudes (nAm), with bright yellow and bright blue 

corresponding to the maximum and minimum, respectively. 

 

After computing the output of the SP algorithm over the 

model of (13), the support of the estimate over 𝑆𝑖  together 

with its nearest neighbors in 𝑆𝑖 1, constitute the source space 

for estimation over the model induced by 𝑆𝑖 1 . As an 

example, Figure 1(a) depicts an active region within the 

somatosensory cortex shown as a geometrical projection 

over the subject’s inflated cortical surface. Figures 1(b-f) 

show the progression of the SP algorithm, for one instance 

of time, in search for a subspace to which the inverse 

solution will eventually be constrained. The full order state 

estimates are reconstructed as 𝕍(𝑖)′ ̂
  
(𝑖)

, for all   𝑃 , and 

zero elsewhere. It is important to note that the target sparsity 

level   depends on the choice of the source space 𝑆𝑖, and is 

selected based on the expected size of the active region in 

the corresponding 𝑆𝑖. 

When the candidate subspace over 𝑆  (Figure 1(f)) is 

obtained, the dynamic Maximum a Posteriori EM algorithm 

(dMAP-EM) proposed in [7] is employed to estimate the 

activity over the central dipoles in the candidate subspace 

together with their nearest neighbors. 

  
D. MEG Simulation Studies 

 

We simulated a total of 180 MEG recordings to 

compare the source localization performance of the MNE 

and SP solutions for various active regions and different 

observation noise covariances. Twenty active regions with 

average radius of ~6.5 mm were randomly created over a 

highly discretized mesh of ~300,000 dipole sources, i.e., 

single focal sources defined by their position, orientation, 

and strength, representing the whole cortical mantle of a 

human subject. A 10 Hz sinusoidal oscillation (sampled at 

200 Hz over a period of 1 s) was used to simulate cortical 

activity within each region. Dipole moments of 10 nAm 

were uniformly assigned within each active region in 

order to be consistent with those that are usually required 

to explain the magnetic field strengths measured outside 

the head [14]. For nine different SNR values in the range 

 12 dB, MEG recordings were simulated for each of the 

20 active regions according to (1). Finally, the energy 

ratio within a 5 mm margin of each active region (~1.8 

times the radius of the active region) was computed as 

‖ ̂ 𝑁‖ 
2
‖ ̂‖

 

2
⁄ . 

The cortical surfaces were reconstructed from high 

resolution MRIs using Freesurfer [15,16]. Sinusoids with 

uniform amplitudes were used because they constitute a 

temporal model different than the modeled random walk. 

A transition matrix 𝐹 , equal to the identity matrix 

multiplied by 0.95, was employed. The choice of 𝐹 was 

motivated to provide stability to the state model in (2) (see 

[7] for more details). For each active region and a given 

SNR value, white Gaussian noise was simulated with an 

element-wise variance of 𝜎 
2 ∶= ‖𝐺 ‖ 

2  (𝑁    𝑆𝑁 )⁄ , 

where   represents the total number of samples and   is 

the 𝑀 ×    state matrix. The MNE software package [12] 

was used to compute the forward solution for each active 

region, using a single-compartment boundary-element 

model (BEM) based on high-resolution MRIs, and 

constraining all dipole orientations to the local normal 

vector over the cortical surface. The 306-channel sensor 

layout of the Vectorview MEG system (Elekta-Neuromag, 

Helsinski, Finland) was employed. 

 

IV. RESULTS 

 

Figure 2(a) portrays a geometrical projection of the active 

region over the inflated somatosensory cortex. The dMAP-

EM estimates (at the same time instant used for Figure (1)) 

over the subspace obtained from the SP algorithm are shown 

in Figure 2(b). Finally, Figure 2(c) depicts the estimates 

obtained from the MNE algorithm over the full order source 

space 𝑆 . 
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Fig. 2. (a) Geometrical projection of the active region over the inflated 

cortical surface (b) dMAP-EM estimates over the subspace output by the 

SP algorithm (c) MNE estimates over the full order source space 𝑆  of 
dimension 20484.  

 

The average energy ratio curves for the final SP and MNE 

estimates across the 20 active regions, as a function of SNR, 

are shown in Figure 3 (in blue and red, respectively).  For an 

SNR of ~6 dB, which is consistent with MEG measurements 

[14], an average of more than 77% of the estimated power is 

attributable to a 5 mm margin of the true cortical regions. 

The MNE, on the other hand, only assigns about 3% of the 

estimated energy to the corresponding regions.  

For each simulated data realization, the SP algorithm 

required ~1 minute to localize the support region of the 

source space, and the dMAP-EM step that followed required 

~3 minutes, using a 12-core Xeon workstation. In 

comparison, the full-dimensional dMAP-EM algorithm 

requires ≫ 50 hours for the same data. 

 

 
Fig. 3. Average energy ratio for the SP estimates (blue) and MNE estimates 
(red) across all active regions as a function of SNR. Both axes are in dB 

units.  The SP method provides a 10-20 dB improvement in average energy 

ratio over MNE. 

 

V. DISCUSSION AND CONCLUSIONS  

 

 We derived a greedy algorithm for MEG source 

localization that is highly effective in localizing the power of 

cortical activity estimates throughout the human brain by 

constraining the solution of the neuromagnetic inverse 

problem to an iteratively identified region. It increases the 

observability of silent sources by modeling the brain as the 

union of active regions, as opposed to discretized individual 

dipoles, and is very robust to noise. Our algorithm possesses 

the low computational complexity inherent to pursuit 

algorithms [8], and also generalizes the applicability of 

pursuit algorithms to the spatio-temporal observation model 

of MEG. The latter is of utmost importance in real-time 

applications, such as seizure localization via MEG, as well 

as the broader applications in brain-computer interface 

systems.  

It is important to note that the 10 nAm dipole moments 

employed in the simulations are near the practical sensing 

limit of MEG devices. Nevertheless, our algorithm performs 

gracefully in this worst-case regime due to its underlying 

sparsity-enforcing mechanism. Due to their high 

computational complexity, a comprehensive comparison of 

our proposed method with other source localization 

techniques, such as the dMAP-EM algorithm [7], were not 

feasible. Hence, we chose the widely used MNE algorithm 

as a comparison benchmark. Further evaluations of the 

algorithm for multiple active regions, real data, as well as 

EEG source localization are currently under study.  
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