
  

 

Abstract— Independent Component Analysis (ICA) has been 

successfully used to identify brain related signals and artifacts 

from multi-channel electroencephalographic (EEG) data. 

However the stability of ICA decompositions across sessions 

from a single subject has not been investigated. The goal of this 

study was to isolate EEG independent components (ICs) across 

sessions for each subject so as to assess whether ICs are 

reproducible across sessions. We used 64-channel EEG data 

recorded from two subjects during a simple mind-wandering 

experiment. Each subject participated in 11 twenty-minute 

sessions over a period of five weeks. Extended Infomax ICA 

decomposition was performed on the continuous data of each 

session. We used a simple IC clustering technique based on 

correlation of scalp topographies. Several clusters of 

homogenous components were identified for each subject. 

Typical component clusters accounting for eye movement and 

eye blink artifacts were identified. Both clusters included one 

component from each recording session. In addition, several 

clusters corresponding to brain electrical sources, among them 

clusters exhibiting prominent alpha, beta and Mu band 

activities, included components from most sessions. These 

results present evidence that ICA can provide relatively stable 

solutions across sessions, with important implications for Brain 

Computer Interface research. 

I. INTRODUCTION 

One main challenge in EEG research is the inverse 
problem of separating the EEG sources whose activities are 
projected to the scalp sensors through volume conduction 
and are thus summed in the recorded channel signals. 
Independent Component Analysis (ICA) [1] has been 
proposed to isolate brain and non-brain (artifact) signals that 
contribute to scalp channel signals [2] . Scalp EEG potentials 
describe a mixture of field activities emitted by several 
approximately dipolar effective EEG sources belonging to 
multiple cortical areas. ICA identifies the maximally 
temporally independent components of the electrical 
potentials recorded at scalp electrode sites [3–6]. Recent 
results show that many independent ICA components are 
compatible with a biologically plausible EEG source model 
[7]. 

ICA decompositions are usually performed on a single 
session from each subject. Clustering techniques are then 
used to group similar components across subjects [6]. Some 
evidence of the possible interest in using ICA for effective 
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Brain Computer Interface (BCI) design have been 
demonstrated [8–12]. However, BCI experiments usually 
involve repeated sessions recorded over several days from 
the same subjects. Estimating the stability of ICs across 
sessions for a given subject appears to be crucial for BCI 
applications. In this document, we report results from intra-
subject IC cluster analysis of 11 sessions from two subjects 
performing a mind-wandering task. We identified several 
clusters of similar ICs across sessions, including typical 
ocular artifacts and sources accounting for various types of 
brain activity. 

II. MATERIALS AND METHODS 

A. Subjects 

Two participants volunteered for this experiment after 
giving written informed consent. All participants had normal 
or corrected to normal vision. The experimental protocol was 
approved by the local ethical committee (CPP). 

B. Stimuli and procedure 

The task of subject was adapted from Braboszcz and 
Delorme [13]. Subjects sat in a dimly lighted room in front 
of a computer screen placed 60 cm in front of them. The 
subject was asked to keep his/her gaze on a central fixation 
cross displayed at the center of the screen. The task of the 
subjects was to count backward each of their breath cycles 
(inhale/exhale) from 10 to 1 and to indicate whenever they 
realized they had lost track of their breath count (i.e. that 
their attention had drifted) by pressing a button [14]. As soon 
as they press the button, a phenomenological questionnaire 
was presented on the screen – it took less than one minute to 
complete the questionnaire and then the breath counting task 
resumed.  

While performing the breath counting task, subjects were 
also presented with a passive auditory oddball protocol that 
they were instructed to ignore. The auditory oddball protocol 
was composed of 70 ms pure sounds of 500 Hz for the 
standard stimuli (70% of the stimuli) and 1000 Hz for the 
oddball (30% of the stimuli) presented at 72 dB. 

Each session lasted 20 minutes excluding breaks and time 
spent filling out questionnaires. Eleven sessions of the 20-
minute breath-counting task were recorded for each subject. 
Sessions were scheduled every 2-3 days, excluding week-
ends, over a period of 5 weeks. 

C. EEG acquisition 

A BioSemi EEG system was used to record from 64 
scalp channels mounted in an elastic cap. Sessions were 
recorded at a sampling rate of 1024 Hz. Skin Conductance 
(SC), electrocardiogram (ECG) as well as eye movements 
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and pupil size were also recorded. In this report, we present 
results on the EEG data only. 

D. EEG data processing 

The data were first imported using Cz reference. The data 
were then high-pass filtered using an IIR digital filter with a 
cut-off frequency of 2 Hz (order 6, 0.7-Hz transition 
bandwidth) implemented in the EEGLAB software. Note that 
the quality of the ICA decomposition (as assessed 
subjectively by counting the number of “dipolar” 
components – components with equivalent dipoles with low 
residual variance) decreased dramatically for lower high-
pass frequency cut-off. All data segments corresponding to 
periods during which the subject was completing the 
questionnaire were removed. The data were then 
downsampled to 256 Hz. Channel signals contaminated high 
frequency noise or electrical artifacts (as assessed by visual 
inspection) were removed. We then converted the signal to 
average reference and applied the Extended Infomax version 

of ICA using EEGLAB runica algorithm [15]. EEGLAB 
implementation of JADE ICA decomposition algorithm has 
been used as well. Since ICs resulting from this 
decomposition were almost identical, only Extended 
Infomax components were kept, as this method returns 
globally more dipolar components as stated in [7]. For a 

detailed comparison of ICs obtained from various ICA 
algorithms applied to EEG data, see [7]. To obtain 
approximate source localization, we computed an equivalent 
dipole model for each IC using a four-shell spherical head 
model (radius: 71, 72, 79, 85 mm with shell conductances: 

0.33, 0.0042, 1, 0.33 S) using the DIPFIT plug-in (version 
2.2) [16] of the EEGLAB toolbox (version 9.0.2.3b). The 
spherical model was co-registered with the MNI average 
brain using a custom homogenous matrix computed by 
matching fiducials and vertex in the MNI and the spherical 
models. The lower portion of Fig. 1 shows some IC 
equivalent dipole locations in the 3-D MNI brain volume. 

E. Independent components clustering. 

We performed a within-subject analysis in order to 
identify similar ICs across the different sessions. Our 
independent component clustering algorithm comprised two 
steps: identification of template ICs of interest and clustering 
of ICs similar to the template ICs. 

To identify IC of interest, we used a custom KMean [17] 
algorithm. The algorithm identified several typical 
independent components based on their topographical maps, 
their equivalent dipole location and their power spectrum 
following recommendations described in [6]. All these 
measures were combined and used for clustering. A pre-

 
Figure 1: Three clusters for subject 1. For each cluster, the average scalp topography of the cluster is displayed on the top left corner. The scalp topographies 

of the ICs belonging to a particular cluster are also shown. Above each topography, the session (S) and corresponding IC number (ic) are shown in a colored 

rectangle. The color of the rectangle matches the color of the component’s equivalent dipole (colored disks) and power spectrum (colored lines). Dipole 

locations of corresponding ICs are shown on a standard MNI anatomical model. The cluster centroid is represented as a black disk. The curve on the bottom 

right panel of each cluster indicates the power spectrum of each component. Finally, the last plot displays the spectrum of each IC. The first cluster (Cls4) 

contains 11 ICs (1 IC from each session) and corresponds to eye blinks. The second cluster (Cls12) represents a left Mu component. The third cluster (Cls7) 

shows ICs with beta-range left fronto-parietal activity. 
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clustering matrix contained the scalp topography of each 
component (with dimension reduced from the number of 
channels to 10 using PCA), power spectrum in the 3-25 
frequency band (with dimension reduced from 23 to 10 using 
PCA) and equivalent dipole location in spherical coordinates 
(3 dimensions). This resulted in a n x 23 matrix, n being the 
number of components across all sessions (642 components 
for subject 1;  615 for subject 2). The KMean algorithm was 
initialized using uniform centroids positions and we used 
correlation as a measure of distance between components. 
We customized the KMean algorithm from [17] to limit to at 
most 1 the number of participating components per session 
in each cluster. As a consequence the maximum number of 
components per cluster is the number of sessions. For subject 
1, we used 12 clusters and for subject 2, we used 15 clusters. 
The number of cluster was determined by picking in each 
subject, the session with the minimum number of ICs with an 
equivalent dipole residual variance below 15%. For each IC 
cluster, the IC closest to cluster's centroid was selected. 

As a second step, we run the CORRMAP algorithm [18] 
on each of the selected ICs. The CORRMAP EEGLAB 
plugin outputs, for a given IC template, all ICs with the most 
correlated topographical maps. The algorithm performs two 
passes, one using the IC given as input as template, and a 
second one using the average IC – found after the first pass – 
as template. The difference between the two passes' mean 
correlation is used to compute a similarity index (SI)  which 
informs about how robust the resulting cluster is against the 
selection of the initial map. We constrained CORRMAP to 

return at most one IC per session and, for each cluster, only 
the ICs with a correlation higher than a given correlation 
threshold were kept. We used the default correlation 
threshold of CORRMAP. This optimal threshold is 
automatically determined using an iterative procedure. The 
procedure selects the threshold value for which the SI is 
maximum across the iterations [18].  

III. RESULTS 

Analysis of the first subject data led to the identification 
of 5 clusters which had one component in each session. 3 
clusters with only one component were not considered. We 
counted 9.8±1.7 components per cluster. Mean intra-cluster 
component topography correlation (Mean Intra-Cluster 
Correlation – Mean ICC) was 0.91±0.08. Mean pairwise 
correlation between components outside the cluster (Mean 
Outside Cluster Correlation – Mean OCC) was 0.33±0.06. 
Figure 1 shows three typical clusters. The first cluster (Cls4 
– ICC 0.99) is an eye blink component cluster. The second 
cluster (Cls12 – 0.93) shows typical Mu spectral activity – 
with clearly visible 10 and 20 Hz peaks – located on the left 
primary motor cortex (Talairach coordinates X=-48, Y=-7, 
Z=47, Brodmann area 4). One component was identified in 
each session. The third cluster (Cls7 – 0.91) represents EEG 
sources with a spectral activity in beta2 (20-25Hz) range. 
The centroid of this cluster (Talairach coordinates: X=-33, 
Y=20, Z=8) is located in the left Insula (Brodmann area 13).  

For the second subject, 3 clusters were isolated with one 

 
Figure 2: Three clusters computed for subject 2. The nomenclature is the same as for Figure 1. The first cluster (Cls4) corresponds to eye blinks. The second 

cluster (Cls7) shows ICs with left-parietal alpha range activity. The third cluster (Cls16) shows right occipital alpha activity. 
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component in each session. 4 clusters had only one 
component and were removed. We counted 7.5±3.5 
components per cluster with mean MICC of 0.93±0.06 and 
mean MOCC of 0.36±0.05. Figure 2 shows three typical 
clusters isolated for the second subject. As for the first 
subject, the first cluster (Cls4 – ICC 0.98) corresponds eye 
blinks. The second cluster (Cls7 – ICC 0.89) shows ICs with 
parietal alpha range activity (10 Hz). The closest Gray 
Matter voxel near this cluster's centroid (Talairach 
coordinates X=-35, Y=2, Z=5) is located in the left sub-lobar 
claustrum. The third cluster (Cls 16 – ICC 0.94) shows a 
right occipital alpha activity (10 Hz). The closest Gray 
Matter voxel near this cluster's centroid (Talairach 
coordinates X=39 Y=-68 Z=13) is located in the middle 
occipital gyrus (Talairach coordinates X=39 Y=-68 Z=12, 
range=4, Brodmann area 19). 

IV. DISCUSSION 

Clusters of ICs identified using combined clustering 
methods of KMean and CORRMAP are showing uniform 
scalp topographies, equivalent dipole locations and spectral 
activities. For each of the two subjects, several clusters 
include ICs from all 11 sessions. To our knowledge this is 
the first demonstration showing that ICA decompositions 
applied to different recording sessions of a given subject 
return similar results. 

Among the clusters which we successfully isolated, we 
observed both artefactual IC clusters and brain activity IC 
clusters. The functional relevance of each cluster showing 
ICs corresponding to brain activity has to be considered in 
relation to the task performed by the subject. Here we 
showed Mu, alpha, and beta components. These clusters are 
consistent with the type of ICA clusters found in the 
literature [7, 19]. 

Some components were absent in some sessions. For 
example, a blink component is missing in one session of 
subject 2. After visual inspection of the data for the session 
in which the eye blink component was missing, it appears 
that no significant blinks were present in the analyzed data, 
which explains why ICA failed to isolate an eye blink 
component. When components representing brain sources 
are missing from a cluster, it may be that other EEG sources 
and artifacts dominate the EEG signal for a given session. 
This would explain why some components are absent. The 
likelihood of a component being present could depend on the 
task. We believe the frequency of occurrence of specific 
components in a given task could be a marker of a specific 
mental state, although this has not been tested to date.. 

The reason we run two sequential clustering methods was 
that CORRMAP requires component templates as input. 
When using CORRMAP, prototypical components are 
usually provided by the user to detect specific types of 
artifacts. We wanted to automate this process to detect, 
possibly, other types of biologically plausible components. 
This is the reason why we used the KMean clustering 
algorithm as a first step. The KMean clustering results were 
qualitatively of lower quality than the CORRMAP results 
with less uniform clusters. This is the reason why KMean 

algorithm results are not presented here. We believe that 
other methods, such as running CORRMAP on all possible 
IC templates and then selecting clusters with the largest 
number of ICs – although computationally demanding given 
the large number of components – would have returned 
similar results. 

Although our clustering method was successful, we 
cannot claim it was optimal. We could vary features used for 
clustering (topographies, 3-D dipole location, spectrum, 
etc…), metric (Euclidian, Mahalanobis, Chebyshev, 
Minkowski and other distances), and type of clustering 
algorithm. The crude ICC and OCC topographical 
correlation metric we used would not allow comparing the 
large variety of algorithms. We are currently developing 
other methods to compare clustering solutions. One must 
consider the number of free parameters in the clustering 
algorithm, a metric to assess the quality of a cluster, the size 
of clusters, the number of clusters and the number of 
unclustered components. An information based distance, 
such as the one developed by Marisa Meilă [20] might be a 
good candidate to assess cluster quality. Weighted measures 
based on the Akaike criteria are also worth investigating 
[21–23].  

Clustering in individual subjects is comparatively an easy 
task compared to clustering across subjects. In single subject, 
we expect the scalp topography of a projected underlying 
EEG source to be similar across sessions – with small 
variations based on the uncertainty pertaining to electrodes 
positions. However, when clustering across multiple 
subjects, brain anatomy may differ dramatically. A Mu 
component for one subject may be different from a Mu 
component in another subject simply because of variations in 
the localization of active brain regions on the folded cortical 
grey matter. A few millimeters difference on a gyrus could 
dramatically change the orientation of the equivalent dipole 
and the projected EEG source scalp topographies. 

Our results have important applications for the field of 
BCI and Neurofeedback research. In BCI and 
Neurofeedback, subjects or patients need to train over 
several days. It is therefore important to isolate prototypical 
artifacts and brain sources  –  as separated by ICA – that are 
common across sessions. Our approach provides a first 
solution to tackle this problem in the EEG-based BCI and 
Neurofeedback context, and also show that it is possible to 
find similar components across multiple sessions. For 
example, the Mu rhythm is a typical rhythm that has been 
shown to be efficient at controlling BCIs [24–27]. This 
rhythm was isolated for both subject 1 (figure 1) and 2 
(Cluster 13 not shown). After identification of the Mu 
component in the first session, the correlation method we 
presented could be used to automatically detect this 
component in subsequent sessions.  

V. CONCLUSION 

In this paper, we introduced briefly a new method to 
cluster ICs identified by ICA applied to multi-session human 
EEG recorded during a mind-wandering task. This method 
combines a customized KMean clustering method used to 
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identify ICA components of interest across sessions and a 
correlation-based clustering method applied to scalp 
topographies. We obtained clusters of ICs showing similar 
scalp topographies, equivalent dipole locations and spectral 
activities. For each subject, several clusters included ICs 
from all sessions showing that, even when recording session 
occurred on different days, ICA was able to identify 
recurring brain and artefactual components. This report is a 
proof of concept that ICA provides relatively stable solutions 
across sessions, with important application in BCI research.   
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