
 

Abstract—Phase-amplitude modulation is a form of 

cross frequency coupling where the phase of one 

frequency influences the amplitude of another higher 

frequency. It has been observed in neurophysiological 

recordings during sensory, motor, and cognitive tasks, as 

well as during general anesthesia.  In this paper, we 

describe a novel beamforming procedure to improve 

estimation of phase-amplitude modulation.   We apply 

this method to 64-channel EEG data recorded during 

propofol general anesthesia.  The method improves the 

sensitivity of phase-amplitude analyses, and can be 

applied to a variety of multi-channel neuroscience data 

where phase-amplitude modulation is present. 

  

I. INTRODUCTION 

 

 Oscillations are thought to underlie many aspects of brain 

function, but the mechanisms by which these oscillations 

organize neural activity across different temporal and spatial 

scales remains an area of active investigation. Recently, 

cross-frequency coupling has been observed where the phase 

of theta oscillations (4-8 Hz) modulates the amplitude of 

gamma oscillations (> 30 Hz) [1].  Similar phase amplitude 

relationships have been observed during different sensory, 

motor, and cognitive tasks [2].  These phase-amplitude 

relationships are usually estimated from single channel data, 

even when multi-channel data are acquired simultaneously, 

using non-parametric models of the relationship between 

phase and amplitude (e.g., constructing a histogram of 

amplitudes across discrete phase bins).  The efficiency of 

these analyses could be improved substantially if data could 

be incorporated across multiple channels, and if parametric 

representations could be used to model the phase-amplitude 

relationship. 

In recent work, we studied phase-amplitude modulation 

during general anesthesia.  We examined how the phase of 

slow oscillations (< 1 Hz) influenced the amplitude of alpha-

band oscillations (8-14 Hz), and found distinct patterns of 

modulation corresponding to different levels of 

consciousness under general anesthesia [3]. In this work, we 

describe a novel beamforming procedure to improve 

estimation of phase-amplitude modulation.  In this method, 

we model the phase-amplitude relationship parametrically 

using a low-order Fourier series.  We then identify the 

optimal linear combination of channels to minimize the 

quadratic error for this phase-amplitude modulation curve. 

We apply this method to 64-channel EEG data acquired 

during induction of general anesthesia with the drug 

propofol.  The method improves the sensitivity of phase-

amplitude analyses, and can be applied to a broad range of 

multi-channel neuroscience data, such as EEG or local field 

potentials (LFP), where phase-amplitude modulation is 

present. 

 
II. METHODS 

 

A. EEG Recordings 

 

 We induced and maintained general anesthesia in healthy 

volunteers using the intravenous anesthetic propofol. The 

anesthetic induction was carried out by increasing the 

targeted effect-site propofol concentration to levels of 0, 1, 

2, 3, 4, and 5 μg/ml every 14 minutes with a computer 

controlled infusion pump [4, 5]. We recorded 64-channel 

EEG continuously during this time (BrainAmp MRPlus, 

BrainProducts, GMBH). These studies were approved by the 

Massachusetts General Hospital Human Research 

Committee.  In this paper, we analyze a subset of the data 

including n = 2 subjects to demonstrate our method for 

multi-channel estimation of phase-amplitude modulation 

between the slow (0.1-1 Hz) and alpha (8-14 Hz) bands. 

 

B. Beamforming Formulation of Phase-Amplitude Coupling 

 

Let  ( )      ( )   ( )     ( )   denote the EEG 

time-series corresponding to   EEG channels for time 

     . Let  ( )      ( )   ( )     ( )   and 

 ( )      ( )   ( )     ( )   denote the alpha rhythm 

and slow oscillation time-series which are obtained by 

band-pass filtering  ( ) in the frequency bands of 8-14 Hz 

and 0-1Hz, respectively [3]. Let   ( )     ( )  
  ( ( )) and   ( )    ( )    ( ( )), where  ( ) is the 

discrete-time Hilbert transform. In [3] we showed that the 

amplitude of the alpha rhythm is modulated by the phase of 

the slow oscillation during general anesthesia, based on an 

analysis of single-channel Laplacian-derived EEG.  

Assuming that the phase-amplitude modulation arises from 
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a unified and possibly spatially localized mechanism in the 

brain, the problem reduces to reconstructing a single phase-

amplitude modulation relationship based on the observation 

through the multi-channel array of EEG sensors.  

This problem is well-studied in array signal processing, 

and a viable solution is given by beamforming [6]. The idea 

of beamforming is to form a scalar signal based on the array 

observations in order to minimize an appropriate cost 

function representing the underlying system model. Let 

      ,            denote a weight vector 

(beamforming vector) and consider the corresponding 

projection of the alpha rhythm and slow oscillation time-

series given by   ( )       ( ), and   ( )       ( ), 

respectively. The amplitude of   ( )  and the phase 

(argument) of   ( )are given by 
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respectively. Suppose that for a given value of the phase of 

  ( ) , denoted by  , the amplitude of the alpha rhythm 

  ( )  has a distribution given by the density   (   ) . 

Then, the phase-amplitude modulation relation is defined as 

 

  (   )       
{  ( )  }  (3) 

where the ensemble averaging    
 is with respect to the 

density   (   ). The function   (   ) is clearly periodic 

with the full period defined as       . We further assume 

that    (   )  is stationary during the observation period  

      and hence drop the dependence on    Assuming that 

the function   ( )  has sufficient smoothness properties, it 

can be represented in the Fourier basis as follows: 

 

  ( )     ∑       (  ) 
          (  )  (4) 

 

where      , and      denote the expansion coefficients. A 

suitable model for estimating   ( ) is given by its truncated 

Fourier expansion to the first   terms, with      This 

reduced-order model enforces a smooth phase-amplitude 

modulation relation, which is consistent with empirical 

observations in [3] . A suitable cost function for estimating 

  ( ) is given by the following quadratic form: 

 

 (  {     }  )

  ∫ {  ( )     
 

  

∑ (      (  )        (  )) 
   }   ( )   (5) 

 

Since the densities   (   ) are unknown, it is not possible 

to compute   ( )     
{  ( )  }  Hence, we resort to an 

empirical quadratic cost function for estimating   ( )  by 

substituting the ensemble averaging operator    
 by the 

corresponding temporal averaging as follows: 

 
Fig. 1 For trough-max modulation (A), and peak-max modulation (B), estimates of the empirical phase/amplitude 

relationship (blue) are shown along with first and second order model fits. The optimal weights for each electrode are 

shown to the right as estimated by the cost minimization procedure using the sinusoidal model of order 1 for trough-max 
and order 2 for peak max, chosen based on the corresponding F-statistics. 
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   }

 
  ( )   (6) 

 

where   ( ) denotes the inverse function of   ( ),  ( ) is 

the prior distribution of the slow oscillation phase and    

denotes temporal averaging. Note that we are implicitly 

assuming the ergodicity of the underlying processes during 

the observation period       and hence are replacing 

ensemble averaging by temporal averaging. Since the prior 

 ( ) is unknown, the cost function can be further 

approximated by substituting the ensemble averaging over   

by the corresponding temporal averaging as follows: 

 

 ̂ (  {     }  )

  
 

 
∑ {  ( )    ∑ (     (   ( ))   

   
 
   

     (   ( )))}
 
 (7) 

 

For a given beamformer  , it is possible to minimize the 

cost function over the parameters       and    . Then, we 

can choose the best such beamformer by minimizing the 

resulting cost function over  . This, in fact, corresponds to a 

cost minimization formulation for estimating the reduced-

order phase-amplitude modulation relation that is most 

consistent with the data (in the sense of the above quadratic 

cost function). Assuming that the beamformer elements are 

bounded as       , for some constants   and  , the 

overall optimization procedure can be expressed as: 

 

              
 ̂ (  {     }  )                     

 (8) 

 

The inner minimization can be easily carried out by linear 

regression and the resulting solution can be expressed 

explicitly in terms of   ( )  and   ( ) . The outer 

minimization can be performed using standard optimization 

routines. In particular, since the constraints on    form a 

convex set, we have employed the interior point method for 

the outer minimization stage. 

 

C. Data Analysis 

 

For this analysis, the data from two subjects was used to 

compute optimal weight coefficients  .  In our earlier 

studies, we showed that the phase-amplitude modulation of 

frontal EEG under GA [3] undergoes two different patterns 

of modulation, corresponding to depth of anesthesia.  The 

first pattern, occurring before and after the point of loss of 

consciousness, consists of maximum alpha amplitude 

occurring at the trough (surface-negative) of the slow 

oscillation, which we refer to as the “trough-max” pattern. 

 
Fig. 2 (A) The targeted effect-site propofol concentration is shown, along with the time-varying phase-amplitude histogram 
computed based on Laplacian-referenced data for a period spanning the trough-max and peak-max regimes of modulation.  
(B) Phase-amplitude histograms computed separately for a bipolar referencing, Laplacian referencing, and using the 
optimized combination of electrodes for both trough-max and peak-max data segments. 
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Under a deeper level of GA, the relationship reverses and 

maximum alpha amplitude occurs at the peak (surface-

positive) of the slow oscillation, which we refer to as the 

“peak-max” pattern. In order to compute the electrode 

weights that would show both modes of the phase-amplitude 

modulation most clearly, equal-length segments of data from 

both modes were chosen and used to compute the optimal 

weights for each mode.  These trough-max and peak-max 

data for the two subjects was were used to perform the 

averaging described in Equation (7).  The data used in the 

optimization consisted of four-minute segments, chosen as 

periods during which the phase-amplitude modulation was 

relatively constant, based on phase-amplitude histograms 

computed using Laplacian-referenced data. 

TABLE I.  MODULATION DEPTH FOR DIFFERENT METHODS 

 
Subject 1 Subject 2 

Trough-Max Peak-Max Trough-Max Peak-Max 

Bipolar 0.26 0.39 0.22 0.76 
Laplacian 1.08 0.73 0.98 1.00 
Optimized 1.23 0.91 1.33 1.67 

 

III. RESULTS 

 

The alpha amplitude as a function of slow wave phase was 

fit for each of these data sets using the Fourier model in 

Equation (4), as well as a non-parametric model using 100 

phase bins (Figure 1A).  The Fourier model order was 

chosen using an F-test for inclusion of successive terms.  

Based on this test, a first order model was used everywhere 

except in the peak-max data segment from subject 2, where a 

second order model provided a better fit to the data.  

The results of the optimization in all cases tended to give 

the greatest weight to one or two electrodes, and included 

smaller contributions from the other channels.  The values of 

the weights for each electrode for subject 2 are shown in 

Figure 1, using the first Fourier harmonic for the trough-max 

period, and the first and second Fourier harmonics for the 

peak-max period. 

To assess the efficacy of the beamformer weighting, we 

computed time-varying non-parametric phase-amplitude 

histograms using: 1) a single frontal channel with bipolar 

reference, 2) a single frontal channel with Laplacian 

reference (i.e., using the average of neighboring electrodes 

as the reference, as in [3]), and 3) the proposed method with 

optimal weights  .  These phase-amplitude histograms were 

computed using 100 phase bins, averaging over 1-minute 

windows with 30 seconds overlap, normalized by average 

alpha amplitude within each window. Figure 2 shows these 

time-varying phase-amplitude histograms for both subjects 

during periods of both trough-max and peak-max 

modulation. The modulation relationship appears clearest 

when the optimal weights   are used.  To characterize this 

quantitatively, we computed the modulation depth for each 

of the methods by taking the average phase-amplitude 

histogram in each period (trough-max and peak-max), and 

taking the difference between the maximum and minimum 

points of the histogram.  The beamforming method produced 

the largest modulation depth, followed by the Laplacian 

method, with bipolar referencing showing the lowest 

modulation depth in both regimes.  

 

IV. DISCUSSION AND CONCLUSIONS  

 

  Phase-amplitude modulation has been observed in a 

number of oscillatory neural systems sensory, motor, or 

cognitive tasks [2].  The modulation of alpha wave 

amplitude by slow wave phase is present in the EEG during 

general anesthesia, and could be an important variable for 

assessing brain activity and level of consciousness during 

general anesthesia.  In EEG data, the ability to detect cross-

frequency coupling is strongly influenced by the electrode 

reference scheme, and is often difficult to detect with a 

standard bipolar reference.  The beamforming method 

presented here provides a means to obtain electrode weights 

that minimize the least-squares error in a parametric 

sinusoidal model of the phase-amplitude relationship.  This 

optimal weighting of EEG electrodes allows for improved 

detection of phase-amplitude modulation across time and 

subjects.  This method could be useful in studies of phase-

amplitude modulation in the EEG under general anesthesia, 

as well as other conditions where this phenomenon might 

arise.  
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