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Abstract— In this paper, a hybrid BCI system was described
for the control of a simulated wheelchair. This hybrid BCI was
based on the motor imagery-based mu rhythm and the P300
potential. With our paradigm, the user may perform left- or
right-hand imagery to control the direction (left or right turn)
of the simulated wheelchair. Furthermore, a hybrid manner
was used for speed control: e.g., foot imagery without button
attention for deceleration and a specific button attention without
any motor imagery for acceleration. An experiment based on a
simulated wheelchair in virtual environment was conducted to
assess the BCI control. Subjects effectively steered the simulated
wheelchairs by controlling the direction and speed with our
hybrid BCI system. Data analysis validated that our hybrid
BCI system can be used to control the direction and speed of
a simulated wheelchair.

Keywords: Hybrid brain-computer interface (BCI), motor
imagery, P300, wheelchair, direction, speed.

I. INTRODUCTION

One important application of Electroencephalogram
(EEG)-based brain-computer interfaces (BCIs) is for
wheelchair control, which is valuable for improving the
quality of life and self-independence of disabled users [1],
[2]. Until now, two types of protocols, synchronous and asyn-
chronous, have been used for EEG based wheelchair control.
The EEG signals used for synchronous control depend on
the potentials evoked by visual stimuli, including the P300
potential and SSVEP [1], [3]. When using this synchronous
protocol, the direction or the route of the wheelchair can-
not be changed by the user as the wheelchair moves to
the destination. These synchronous prototypes exhibit high
accuracy but suffer from a low response speed; an effective
control command is generally obtained after 4 seconds [1].
The brain signals used for asynchronous control protocols
are generally derived from motor imageries, allowing users
to send an appropriate command (e.g., a change in direction)
to a moving wheelchair [2], [4].

Multi-degree control is essential for an operational
wheelchair. For instance, two control signals are required
for both directional control (left and right) and speed control
(acceleration and deceleration). Furthermore, these control
commands must be accurately and quickly generated. Mul-
tiple independent control signals based on BCIs have been
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discussed in several studies [5], [6]. A common characteristic
for these BCI systems is that the control signals were from
a single modality of motor imageries. Additionally, hybrid
BCIs that combine different brain signals are appealing
in their ability to simultaneously or sequentially provide
multiple control commands [7], [8], [9]. For example, Allison
et al. demonstrated that by combining multiple brain signals,
such as motor imagery and SSVEP, BCI accuracy can be
improved, especially for BCI-blind subjects [7].

This paper proposes a hybrid BCI paradigm to provide
directional and speed control commands to a simulated
wheelchair. In our system, left and right direction commands
are based on the user’s left- and right-hand imageries, re-
spectively. Furthermore, a hybrid paradigm is used to control
speed. In order to decelerate, the user performs a third motor
imagery (e.g. the foot) while ignoring any flashing buttons
on the GUI. If the user wishes to accelerate, he/she pays
attention to a specific flashing button without any motor
imagery. An experiment of a simulated wheelchair driven in a
virtual-environment was conducted to assess the performance
of our proposed hybrid BCI. Our experimental results and
data analysis demonstrated the efficiency of our method.

II. GRAPHICAL USER INTERFACE AND CONTROL
METHODS

In this section, we present the graphical user interface
(GUI), and the algorithms of our system. The GUI, similar
to that used in [8], [9], is illustrated in Fig. 1. A rectan-
gular workspace and 8 flashing buttons are included. The
workspace is 1166 × 721 pixels. There are 8 buttons on the
GUI which flash in a random order to induce P300 potentials.

Fig. 1. The GUI for brain-actuated control of a wheelchair. Eight flashing
buttons are included for evoking P300 potentials.

In addition, we propose a hierarchical decision method for
simulated wheelchair steering (Fig. 2) to detect directional
and speed control commands from the user’s EEG signals.
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Fig. 2. Algorithm diagram for the detection of directional and speed control
signals. In this paradigm, the user imagines left- or right-hand to produce
a control command for a left or right turn, respectively. Moreover, the user
performs foot motor imagery with ignoring the flashing buttons and focuses
on a specific button without any motor imagery to send a deceleration or
an acceleration control command, respectively.

First, the motor imagery patterns are extracted for identifying
the directional control commands. If a left- or right-hand
motor imagery is detected, then a directional control com-
mand for a left or right turn is obtained. Otherwise, speed
control commands are identified. Speed control command ac-
celeration/deceleration is determined by discriminating two
tasks for the user. The first task corresponding to deceleration
command is that the user performs foot imagery without
paying attention to the specific flashing button, while the
other task corresponding to acceleration command is that the
user pays attention to the specific flashing button without any
motor imagery. At the end, the user can keep the current
moving speed with idle state of both motor imagery and
P300.

1) Detection of directional control signals: As described
above, left- and right-hand imagery are associated with a left
or right turn of the simulated wheelchair. One directional
control command triggers a fixed, predefined degree of
rotation. Hence, the objective for directional control is to
detect left- and right-hand motor imagery from the online
EEG signals. The steps of our algorithm for left- or right-
hand motor imagery detection is as follows:

(i) EEG signals are spatially filtered with common average
reference (CAR) and then bandpass-filtered at 8-32 Hz.

(ii) Spatial patterns are extracted using the method of
one versus the rest common spatial patterns (OVR-CSP)
proposed in [10]. In this study, there are 4 classes related
to motor imagery: left-hand, right-hand, foot and idle state.
Thus, we obtain 4 CSP transformation matrices based on
the training dataset including 30 trials for each condition.
Training data collection is illustrated in Fig. 3. We select
the first and last three rows from each CSP transformation
matrix (W ) to construct a new transformation matrix with
24 rows for feature extraction as in [10].

(iii) Based on the CSP features of the training data set,
4 linear discriminant analysis (LDA) classifiers are trained
with the one-versus-rest policy for dealing with the multi-
class classification problem[11].

(iv) For online testing, the four classifiers trained in the
step iii are applied to the feature vector extracted from EEG
data in a time interval of 1000 ms before the current time
point. Hence four LDA output scores are obtained. Following
a loss-based decoding method described in [11], the class
label corresponding to the maximal score is given to the
feature vector. This detection is performed every 200 ms.

0   1 2 3 4 5 6 7 8 second

Blank
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Fig. 3. Paradigm for training data acquisition in a trial. At the beginning
(0-2.25 s), the screen is blank. From 2.25 s to 4 s, a cross appears in the
screen to capture the subject’s visual attention. From 4 s to 8 s, an arrow cue
appears. The subject is instructed to implement a mental task according to
the following cues: left or right arrows for left- or right-hand motor imagery,
an up arrow for foot motor imagery and a down arrow attention to a specific
button (the middle up button in our experiment). When an arrow appears
on the screen, 8 buttons flash alternately in a random order. Each button
is intensified for 100 ms, and the time interval between two consecutive
button flashes is 120 ms. Thus, one round of button flashes takes 960 ms
and there are 4 rounds (repeats) of button flashes per trial.

The direction of the simulated wheelchair will remain
constant if the user performs foot motor imagery or is in
the idle state of motor imagery. In this case, the detection of
speed control signals is performed as described in the next
subsection.

2) Detection of speed control signals: When no direc-
tional control signals are detected, speed control signals
are detected. There are two features extraction for speed
detection (Fig. 2). One is for motor imagery detection and
the other is for P300 detection.

First, we describe feature extraction for motor imagery
detection using the training data. Here the training data set
contains two classes of data corresponding to foot imagery
and the idle state of motor imagery (attention to a specific
button), respectively. If a trial in the training data corresponds
to the idle state of motor imagery, then its label is set to
1. Otherwise, its label is -1. A CSP feature vector xj for
the jth trial of the training data can be constructed with
the method similar to the description in section II-.1, where
j = 1, . . . , N .

The P300 feature extraction for the jth trial of the training
data (j = 1, . . . , N ) is similar to that described in [8]. First,
we extract a segment (0-600 ms after a button flash) of
the filtered EEG signals with frequency band 0.1-20 Hz
from each channel for each flash of the specific button (the
middle up button in our experiment). Then, the segment is
downsampled by a rate of 6 from each channel to obtain a
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new data vector with 375 dimensions (25 time points ×15
channels) by concatenating from all 15 channels. The feature
vector (pj) in each trial is obtained by averaging 4 data
vectors corresponding to 4 repeats of the button flash. If the
trial corresponds to attention to the specific button, then its
label is set to 1. Otherwise, its label is -1.

After extracting the motor imagery feature xj and the
P300 feature pj (j = 1, . . . , N ) based on the training data
set, a combination algorithm, PROB, is used to combine
these features of two modalities [10]. Specifically, two LDA
classifiers, denoted as (wX , bX) and (wP , bP ), are trained
using the motor imagery feature vectors with labels and the
P300 feature vectors with labels, respectively. For each pair
of motor imagery feature vector and P300 feature vector from
a trial, two scores are computed using the corresponding
classifiers. Next, we calculate the sum of these two scores
as,

Dj =
1

2
[wT

Xxj + bX ] +
1

2
[wT

P pj + bP ], j = 1, . . . , N. (1)

Using Dj , we calculate two thresholds, D+
mean and

D−
mean, as follows:

D+
mean =

1

|D+|
∑

j∈D+

Dj , D−
mean =

1

|D−|
∑

j∈D−

Dj , (2)

where D+ and D− denote the set of indexes of Dj satis-
fying Dj > Dmean and Dj < Dmean, respectively (j =
1, . . . , N ), Dmean is the mean of all Dj , and | ∗ | is the
cardinality of a set.

In the test phase, a motor imagery feature vector is
extracted every 200 ms using EEG data between 0 ms and
1000 ms before the current time point, while a P300 feature
vector is extracted every flash of the specific button as above.
Specifically, P300 feature extraction is based on the EEG
data of 4 repeats of the specific button flash (the current
flash and the three before). The speed signal detection is
performed every 200 ms based on the motor imagery feature
vector updated every 200 ms and the P300 feature vector
updated every 960 ms (a round of button flashes).

A score denoted as D is then calculated as in (1). A label
ŷ for this epoch of EEG data is defined as

ŷ =


+1, if D > D+

mean

0, if D−
mean ≤ D ≤ D+

mean

−1, if D < D−
mean.

(3)

In (3), the label ŷ = 1,−1, or 0 are corresponding
to an acceleration command, a deceleration command and
no speed control command for the simulated wheelchair,
respectively.

III. EXPERIMENTAL RESULTS

To validate our proposed hybrid BCI system for detecting
directional and speed control commands, an experiment
of a simulated wheelchair in a virtual environments was
conducted.

In this experiment, the simulated wheelchair and 6 fixed
destinations (circles) are shown in Fig. 4. We defined two
routes for each user by setting the order of destinations,
which are presented in Fig. 4A and Fig. 4B, respectively.
The numbers in these circles denote the order in which
the simulated wheelchair arrives at each destination. Both
routes had the same optimal path length, 2270 pixels. The
current destination, where the simulated wheelchair was first
located, is marked red. When the subject drives the simulated
wheelchair through the current destination at low speed,
the color of this circle changes to blue and the next circle
changes to red. If, however, the simulated wheelchair passes
the current destination with high speed, the circle remains
red. The user must drive the simulated wheelchair through
the missed circle again (at low speed) until the color changes.
The working space and control task designs originate from
the AUTOMATIC CAR CONTROL event from the BCI
competition held in China (2010), which was organized
by Tsinghua University. During the competition, the order
of destinations was randomly set for each participant. The
hybrid BCI system described here won the first place in this
competition.

(A) (B)

Fig. 4. The simulated wheelchair and two predefined routes.

Five healthy subjects with ages in the range of 22-33 years
participated in this experiment. There were three sessions for
each subject, and each session held 10 trials. In each trial, one
of two predefined routes was randomly selected. The subject
was required to drive the simulated wheelchair past the six
circles sequentially at low speed while trying to proceed as
quickly as possible, similar to the BCI competition in China
(2010). Furthermore, if the user did not accomplish this task
within 2 minutes, then the trial was considered a failure and
was automatically terminated. In this experiment, the high
speed and the low speed were set to 40 pixels/s and 20
pixels/s, respectively. The rotational speed was set to 6◦

per directional control command.
The following performance indexes are used to assess our

hybrid BCI with respect to directional and speed control in
this experiment.

1) Accuracy rate: the percentage of successful navigation
tasks.

2) Path length: the distance (pixels/meters) traveled to
accomplish the task.

3) Path length optimality ratio: the ratio of the path length
to the optimal path length. The optimal path length is the
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TABLE I
PERFORMANCE INDEXES FOR ASSESSING THE SIMULATED WHEELCHAIR DRIVEN BY OUR HYBRID BCI.

Accuracy rate (%) Path length (pixel) Path opt. ratio Time (s) Time for low speed (s) Collisions

S1 100±0 2837.35±66.63 1.25±0.04 82.11±1.62 22.35±1.22 0±0
S2 100±0 2761.13±51.26 1.22±0.03 80.84±1.35 23.63±1.45 0±0
S3 100±0 2919.65±76.42 1.29±0.03 88.39±1.26 30.80±1.76 0±0
S4 100±0 2856.32±73.27 1.26±0.04 85.02±1.19 27.22±1.23 0±0
S5 100±0 2842.32±54.71 1.25±0.02 85.75±1.22 29.38±1.15 0±0

mean±std 100±0 2843.46±105.41 1.25±0.05 84.42±4.63 26.67±4.18 0±0

sum of point-to-point distances between each pair of adjacent
destinations.

4) Time: the time (seconds) taken to accomplish the task.
5) Time for low speed: the time (seconds) that the

simulated wheelchair travels at low speed.
6) Collisions: the number of collisions incurring to the

edges of the working space for the simulated wheelchair.
The experimental results are summarized in Table I. All of

the subjects accomplished each predefined task successfully
using the directional and speed control for the simulated
wheelchair. The average path optimality ratio was 1.25,
indicating that there was a difference between the optimal
path length and the actual path length taken by the subjects.
This difference was mainly due to the extra distance required
to turn sharply around each destination; directional correc-
tion occurred in the open space. Furthermore, no collisions
occurred during the experiment. Thus, the performance of
our proposed hybrid BCI system for directional control was
satisfactory. In this experiment, the subjects were required
to accomplish the tasks as soon as possible. The average
time for low speed was 26.67 s in a trial. This was mainly
because the user needed to drive simulated wheelchair to pass
these destinations at low speed according to our experimental
requirement. The average total time for accomplishing the
task of a trial was 84.42 s. Thus, on average, the simulated
wheelchair traveled at high speed for 57.75s (84.42 −
26.67 = 57.75s) in a trial. This implies that all subjects
performed speed control effectively using our hybrid BCI
system.

IV. CONCLUSIONS

In this paper, a hybrid BCI that combines mu/beta rhythm
from motor imagery and the P300 potentials was presented
for directional and speed control of a simulated wheelchair.
Four commands, associated with 4 mental tasks respectively,
are provided. Specifically, left- or right-hand imagery is used
for the left or right movement of the simulated wheelchair,
and foot imagery or a specific button attention is used
for deceleration or acceleration. An experiment based on a
simulated wheelchair in a virtual environment demonstrated
the effectiveness of our method and system.
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