
  

 

Abstract— Brain-machine interfaces (BMIs) have the 

potential to restore lost function to individuals with severe 

motor impairments.  An important design specification for 

BMIs to be clinically useful is the ability to achieve high 

performance over a period of months to years without requiring 

frequent recalibration.  Here, we report the first successful 

implementation of a biomimetic BMI based on local field 

potentials (LFPs).  A BMI decoder was built from a single 

recording session of a random-pursuit reaching task for each of 

two monkeys, and used to control cursor position in real time 

(online) over a span of 210 days.  Performance using this BMI 

was similar to prior reports using BMIs based on single-unit 

spikes for 2D cursor control.  During this ongoing study, target 

acquisition rates remained constant (in 1 monkey) or improved 

slightly (1 monkey) over a 7 month span, and performance 

metrics of cursor movement (path length and time-to-target) 

also remained constant or showed mild improvement as the 

monkeys gained practice.  Based on these results, we expect that 

a stable, high-performance BMI based on LFP signals could 

serve as a viable alternative to single-unit based BMIs. 

 

I. INTRODUCTION 

As brain-machine interface (BMI) applications have 
grown more sophisticated, questions have arisen as to the 
optimal signal source to control them.  Recent biomimetic 
BMI designs (i.e., those based closely on the brain’s normal 
physiology) have generally inferred movement from trains of 
single-unit action potentials, or spikes.  This BMI design can 
decode endpoint kinematics [1], and control computer 
cursors [2, 3] or robots [4, 5].  Offline movement decoding 
has also been accomplished using local field potentials 
(LFPs) in place of spikes [6-9].  Advantages of LFPs over 
single-unit spikes include potentially greater longevity [10, 
11], lower sampling rates, requiring less power and 
generating less heat in an implantable device, and 
eliminating the need for spike sorting. However, only one 
prior study has used intracortical LFPs in an online BMI, and 
that was as a binary gating signal [12].   
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Most previous studies with online BMIs used decoders 
that were trained within a few days to a week. Evidence that 
offline movement decoding can still be performed after 
months to several years has been presented [13-15];  
however, the same studies reported the complete loss of 
spike signals for a majority of channels.  Meanwhile, the 
effects of signal degradation on actual online BMI control 
(in the absence of decoder retraining) remain unknown. 

In this study, we describe the first reported use of a 
biomimetic BMI decoder based purely on LFPs to control a 
computer cursor online.  This decoder was built from a 
single recording session and remained virtually unmodified 
through the course of 210 days of testing. 

II. METHODS 

A. Behavior 

All experiments were approved by the Institutional 
Animal Care and Use Committee of Northwestern 
University.  Two rhesus macaques (C and M) were trained to 
perform a random-target pursuit task while grasping a two-
link manipulandum.  The position of the manipulandum 
controlled a cursor on a monitor placed at arm’s length from 
the monkey.  Successful trials consisted of acquiring a series 
of 6 randomly positioned targets, and holding within each for 
0.1 s to obtain a liquid reward.  The workspace of possible 
target locations measured 20 cm X 20 cm, and the task 
covered all of this space.  Targets were 2 cm X 2 cm squares.  
Cursor diameter was 1 cm.  The task was self-initiated and 
self-paced. 

B. Recording and online LFP control 

In each monkey, following behavioral training, we 
surgically implanted a silicon 96-electrode array (Blackrock 
Microsystems) into the arm region of primary motor cortex 
contralateral to the arm used in the behavior.  All electrodes 
were 1.5 mm long.  Details of the surgical procedure have 
been described elsewhere [16]. 

All recordings were performed using a 96-channel MAP 
system (Plexon, Inc, Dallas TX).  LFP signals were band-
pass filtered from 0.5 Hz to 500 Hz, then sampled at 1000 
Hz.  Position of the manipulandum was also sampled at 1000 
Hz.  A velocity decoder for each monkey was built from a 
single 10-minute hand-control file.  Monkeys were able to 
achieve approximately 100 rewards in this amount of time 
(i.e., 600 targets acquired).  We extracted 6 features from 
each field potential signal: the local motor potential (LMP; a 
sliding average in the time domain of 256 ms length), and the 
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Figure 2.  Performance metrics across days.  Blue: monkey C, red: monkey M.  Each point is the median across trials for the metric for one day.  The solid 

colored lines represent the best-fit line through the median values, shaded areas demarcate a 95% confidence interval around the line. 

power in 5 frequency bands (0-4, 7-20, 70-115, 130-200, and 
200-300 Hz).  For each band, we computed the log of the 
power in each bin relative to the log of the mean power in 
the band over the entire file, to provide a sample every 50 
ms.  We chose a subset of features for decoding based on the 
absolute value of the correlation coefficient (|r|) between 
each feature and the endpoint velocity.  We ranked features 
in descending order of the mean of |r| over both output 
dimensions, and used the top 150 features for decoding.  The 
decoder itself was constructed using a Wiener cascade model 
[17].  A set of causal linear filters (10 lags) was fit between 
the LFP features and the x- and y-velocity of the 
manipulandum.  The outputs of the Wiener filter were then 
convolved with a static nonlinearity [18] implemented by 
fitting a third order polynomial between the filter outputs and 
the velocities.   

The online LFP BMI (“brain control”) was implemented 
using custom software to calculate the LMP and frequency-
based features online, apply the Wiener cascade decoder, 

and obtain predicted cursor velocity, which was integrated to 
provide cursor position.  Targets for the online version of the 
random-pursuit task were 4 cm on a side (target surface area 
was 4% of the workspace). 

In some sessions, we observed a large amount of noise on 
particular channels during visual inspection of the signals 
prior to the start of brain control.  When this occurred, 
features corresponding to these noisy channels were removed 
from the decoder by setting their weights to zero.  We did 
not retrain the decoder, or include additional channels to 
compensate for this loss of information.  

C. Evaluating BMI performance 

We used three measures to assess the quality of cursor 
control: (1) target acquisition rate (rewarded/total trials), (2) 
normalized cursor path length, and (3) normalized cursor 
time-to-target.  Normalized path length, a measure of path 
straightness, is the length of the cursor path between 
consecutive targets, divided by the straight-line Euclidean 
distance between the targets.  Normalized time-to-target is 
the elapsed time from target presentation to target 
acquisition, divided by the distance travelled in that trial.  
See [3]. 

III. RESULTS 

Both monkeys performed LFP brain control two or three 
days per week.  On the other 2-3 days per week, they 
participated in a different study with a spike-based BMI 
(results not shown).  To date, we have recorded 72 and 61 
LFP control days for monkeys C and M, respectively, over 
the course of 210 days. 

A.  Target acquisition performance was stable, or slightly 

improved, over time 

Fig. 1 shows the rate of target acquisition for monkeys C 
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Figure 1. Target acquisition performance vs. decoder age.  Black circles, 

performance for 1 recording session; red line, best linear fit.  A, monkey 

C. Pearson’s correlation coefficient r=0.51 (p<10-5).  The slope of the 

best-fit line was 0.001.  B, monkey M.  Pearson’s correlation coefficient 

r=0.25 (p=0.05).  The slope of the best-fit line was 0.0. 
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(Fig. 1A) and M (Fig. 1B).  Across days, the mean rate of 
successful target acquisition was 72 ± 8% for monkey C (126 
± 25 total trials/day), and 68 ± 7% for monkey M (122 ± 30 
trials/day).  For monkey C, there was a small but statistically 
significant positive correlation between acquisition rate and 
the number of days since the decoder was built (decoder age, 
Fig. 1A), indicating that, for this monkey, performance 
improved with practice.  For monkey M (Fig. 1B), the 
acquisition rate was not significantly correlated with decoder 
age. 

B. BMI performance metrics showed improved control over 

time 

For each day, the median over successful trials was 
calculated for path length and time-to-target (Fig. 2).  The 
medians of path lengths taken over all days were 2.63 and 
2.78 for monkeys C and M, respectively.  The overall 
median of time-to-target values was 0.22 s/cm for each 
monkey.  For monkey C, both metrics exhibited a weak but 
significant negative correlation with decoder age (path 
length: r=-0.25, p=0.03, time-to-target: r=-0.38 s/cm, 
p=0.0008, Pearson’s correlation, see Fig. 2), indicating that 
cursor paths tended to straighten and reach the targets more 
quickly.  Monkey M showed no significant correlation 
between path length and decoder age, and a weak negative 
correlation between time-to-target and decoder age (path 
length: r=0.19, p=0.14; time-to-target: r=-0.27, p=0.04, 
Pearson’s correlation, see Fig. 2).  As with target acquisition 
rate, these metrics demonstrated either no change, or 
improvement over time.  

Removal of features corresponding to noisy channels 
occurred in only 21 out of 133 sessions between both 
monkeys. Nearly all (18/21) of these sessions took place 
during months 2-4 of recording.  In the 3 most recent 
months, only one such adjustment has been made for monkey 
M, and none have been necessary for monkey C. 

C. Monkeys C and M differed in distribution of movement 

information 

An examination of the decoders used for brain control 
shows that despite similar performance, monkey M and 
monkey C represented movement information differently 
within the LFP signals.  Of the 150 features chosen (see 
Methods), 47% and 21% were from the LMP for monkeys M 
and C, respectively.  The delta (0-4 Hz) band supplied 33% 
and 22% of features, respectively.  The gamma bands 
supplied a significant proportion of features, with 0% and 
14% from the 70-115 Hz band (for M and C), 11% and 17% 
from the 130-200 Hz band, and 9% and 23% from the 200-
300 Hz band.  The least informative band was the 7-20 Hz 
band, which supplied 0 and 3% of chosen features for 
monkeys M and C, respectively.  Thus, information about 
movement was more broadly distributed in monkey C than in 
monkey M, whose feature set was dominated by the LMP. 

IV. DISCUSSION 

These results represent clear evidence that online, 
biomimetic BMI control using LFP signals is feasible and 
accurate.  LFP-based control performance was comparable to 

that of spike-based BMI control in the random target-pursuit 
task (for example, in [3], time-to-target was 0.33 s/cm and 
path length was 3.67, averaged over both monkeys).  This is, 
to our knowledge, the first time such control has been 
demonstrated with LFPs.  It is likewise the first 
demonstration of long term (7 month) stability in online BMI 
control achieved without recalibration of a decoder built on 
day 1 of the study. 

All measures of BMI performance remained stable, or 
improved slightly over at least 7 months using the same 
decoder.  Previously, Chao et al. [19] found no decline in 
their ability to decode movement kinematics offline over the 
course of 250 days using subdurally-recorded signals.  The 
present work extends these earlier results to intracortically 
recorded LFPs and, importantly, confirms them in actual 
online BMI control.  The ability to operate a BMI without 
frequent decoder recalibrations would increase the user-
friendliness of a neuroprosthesis, which would benefit 
patients directly by reducing the need for caregiver 
assistance. 

 Ganguly et al. [2] demonstrated highly stable spike-
based online decoding of movement over the course of 19 
days, but their method of isolating stable single units was 
even more labor-intensive than spike sorting and would not 
likely be practical for a clinical application.  Their decoders 
were also recalibrated each day.   

LFPs are attractive as BMI signal sources for several 
reasons, including the stability described above. While we 
did remove channels in some sessions due to obvious noise 
contamination, this could easily be automated and would not 
require input from a BMI user.  As mentioned above, LFPs 
would likely incur lower computational and power costs.  
Moreover, we have observed previously that LFPs can be 
used to decode movement in the absence of spikes [11], 
suggesting that LFPs may provide sufficient longevity to 
operate BMIs for clinically-useful durations, i.e., decades. 
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