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Abstract— Falls are a common problem in the elderly pop-
ulation, and their prediction has been a major interest for
the medical field. The relationship between stumbles and falls
has not been very well understood yet. A critical requirement
in advancing the study of this relationship is the realization
of a realistic and effective stumble detection system. In this
paper, we present a system for the detection of stumbles during
walking. Our system consists of a single low cost triaxial
accelerometer that may be worn by patients and is convenient
for a wide range of subjects. We formulate the problem as an
anomaly detection and we validate our system with a large data
set collected from 9 subjects. The data set contains a total of 100
stumbles and 45 minutes of walking. We compare 7 different
placements for the accelerometer, and show that our system
achieves a 99% detection rate, with a 0.2% false alarm rate
using an accelerometer worn on the chest.

I. INTRODUCTION

Falls pose a major health problem in the elderly popu-
lation, and they account for a significant portion of their
injury and death. Injuries resulting from falls can be not
only physically, but mentally detrimental [14], resulting in
the reduction or loss of one’s independence [8]. A recent
study by the center for disease control and prevention (CDC)
shows that one in every three adults (age 65 and older) falls
each year. For example, in 2008 more than 19,700 adults (65
or older) died from unintentional fall injuries. In 2009, 2.2
million injuries were treated in emergency departments, and
more than 581,000 were hospitalized. The injuries included:
hip fractures, spine fractures, leg fractures, and head traumas.
In the same year more than $19 billion were spent on fall
related injuries [7].

Due to these reasons, understanding falls and their pre-
cursors became a major topic in medicine and public health.
For example, in 2009 the institute of medicine (IOM) listed
research on falls and their prevention among older adults,
in their first quartile of priorities [15]. The current methods
of fall prevention and predictions consist of exercise and
balance training. This might be supplemented in the future by
a system of a body sensor network, monitoring individuals,
assessing the risk of falls, and predicting the likelihood of a
future fall. This system would alert the user in case of a high
risk of falling, and suggest what precaution they should take
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(e.g. resting, minimal activities, checking with a doctor, etc.).
Statistically, the two leading causes of unintentional falls are
loss of balance and stumbling [13].

Much of the effort in the research community focused
on monitoring gait and loss of balance to assess the risk
of falls [13]. The relationship between stumbles and falls
is still not well understood, in other words, the following
question is not yet answered:

Are frequent stumbles an indicator of high risk of falling?

The study of stumbles has been mostly about understand-
ing stumbles, the recovery strategies, and the muscle and
nervous system behavior when a stumble occurs. For exam-
ple, it was established that there are two general strategies
of recovery from stumbling: elevating and lowering. The
elevating strategy occurs as a response to a perturbation
during the early swing phase of gait, whereas the lowering
strategy occurs during the late swing phase of gait [17] [4].
It was established that one’s ability to perform such recovery
methods after a stumble could be determined by one’s ability
to perform quick steps [4]. Weakening of the nervous system
in the elderly may seriously restrict their ability to perform
these quick steps during recovery, which may lead to a fall.

To date, the most common form of stumble reporting
continues to be self-report. This method is obviously flawed
and not reliable since it relies entirely on the ability to
remember and report stumble events. However, the advance-
ments in low cost and low power sensing technology, low
cost storage systems, processing systems, and mathematical
tools are now enabling us to continuously and remotely
monitor the activities of people [1], [6], [16], [20]. In this
work, we design a system that monitors the walking of
people, and detects stumbles using a single low cost and low
power accelerometer. This system does not directly answer
the question above, but shows that we can detect stumbles
using a single accelerometer worn on the body, and that
the technology we are using will enable the study of the
relationship between stumbles and falls.

The paper is organized as follows. In Section II we
review the literature on stumble detection. In Section III we
formulate the problem as anomaly detection, and show how
the stumble data look. Section IV describes our system, and
our data collection procedure. In Section V, we present and
discuss the performance of our system. Finally, Section VI
concludes the paper, and presents the future work.
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II. RELATED WORK

Most of the related work in the engineering literature
focuses on fall detection and fast reporting to doctors [2],
[12], [14], [19]. Other related work focused on gait analysis
and monitoring, such as balance, gait symmetry, and gait
speed [13], [20]. Very few papers considered the problem
of stumble detection, and no work was found on relating
stumbles and falls. Related work in the medical literature
focused on studying the biomechanics and muscle behavior
when a stumble occurs. It was established that a fall occurs
when the person is not quick enough to recover from a
stumble and prevent the fall [18] [4]. The related aspect to
our research is in the simulation of stumbles. There are two
major categories in simulating stumbles: treadmill-based, and
terrain-based. In [18], an experiment was designed based on
a treadmill; subjects were asked to walk on a treadmill, and
obstacles were dropped during early swing. It was found that
the knee is bent more in order to lift the foot over the obstacle
during stumbling. In [4], a treadmill-based experiment was
also performed and the authors found that not only the lower
limb motions, but also the control of the trunk is necessary to
understand the recovery process. In this type of work, there
was not any stumble detection. Stumbles were simulated, and
studied without any evaluation of the detection.

There has been little research on systems for stumble
detection. Two interesting papers that considered a version
of the stumble detection problem. Both papers were moti-
vated by the design of an intelligent and active lower limb
prothesis. The objective is to build an intelligent prothesis
that can detect a stumble when it occurs and have an active
recovery response to prevent the subject from falling. In
[10], the stumble detection and active recovery are based on
accelerometers mounted on the prothetic limb. To simulate
stumbles, a walkway is constructed with hidden obstacles
that appear as subjects walk through it. They collected their
data from 10 healthy subjects who were instrumented with
three accelerometers on the left leg (foot, shank, and thigh).
They collected 19 stumbles and 34 normal walk strides from
10 subjects. They report 100% detection accuracy, but do not
report any false alarm rate or precision-recall results. This
data set is unfortunately too small and not representative.
In [21], the detection is based on accelerometers and EMG
sensors that measure the muscle activity of the hip. They
collected two sets of data. The first set is from 7 subjects
with transfemoral amputations. Five of these subjects were
asked to walk on a treadmill where sudden accelerations or
decelerations of the treadmill were used to simulate stumbles;
for each subject ten trials with sudden treadmill acceleration
and then trials with sudden treadmill deceleration were
tested. The speed, accelerations and decelerations were fixed
and were the same for all 5 subjects. The other two were
asked to walk on an obstacle course. A total of 15 trials
were tested for each subject, and each trial was for 5 minutes.
The total number of stumbles is not reported, but they report
100% stumble detection, and between 0% and 0.0009% false
alarm rate (depending on the subject). They also report that

the EMG sensors were necessary to achieve this very small
false alarm rate. A main limitation of the treadmill data is that
the acceleration is controlled and the speed of the walking
is fixed.

In our work, we collect a bigger and more realistic data
set. We use a single accelerometer, and we evaluate 7
different placements on the body not limited to the legs.
We achieve very good results using only one accelerometer.
Furthermore, our data set is collected on an outdoor terrain
(as described below) where the speed of walking is natural
and not controlled. It contains a total of 100 stumbles, and
over 45 minutes of normal walk for 9 subjects.

III. STUMBLE DETECTION METHODOLOGY

A. Background and Notation

Before we formulate the the problem, we introduce and
define the mathematical terms we are going to use. We
borrow some of the definitions from [11], and extend them
to our problem.

Definition 1: A 3-D Time Series is a sequence D =
{dt1 , dt1+1, · · · , dtm} of an ordered set of m real valued
column vectors dti , with time indices ti, i = 1, · · · ,m.

Definition 2: A 3-D subsequence of length T of a
3-D time series D, is a 3-D time series Dti:ti+T =
{dti , dti+1, · · · , dti+T }.

We represent the 3-D Time Series D by a (4xm) matrix
where the first row is the time indices ti, and the second to
fourth rows correspond to the column vectors dti . We see
now that the matrix corresponding to a 3-D subsequence of
a time series D, is a sub-matrix of the matrix corresponding
to D.

B. Problem Formulation

We consider the problem of human stumble detection us-
ing one acceleration sensor worn on the body, and we would
like to test the effectiveness of different body locations.
The accelerometer measures the [X, Y, Z]-components of
the acceleration at the body location where it is mounted.
The sensor could be worn on L different parts of the body.
We would like to instrument the user for a long period
of time (e.g. a day, a week, a month), and detect how
many stumbles they had during that time. We model the
acceleration data of each sensor as a 3-D time series of length
m (m corresponds to the time period of interest, e.g. day,
week, month, etc.), Dl = {dl,ti , dl,ti+1, · · · , dl,tm}, where
Dl is the acceleration data indexed by the body location
l ∈ {1, . . . L} between the times t1 and tm, and dl,ti is
the three dimensional vector of acceleration at location l
and time ti. To detect and count the number of stumbles
in a 3-D time series Dl, we detect the occurrence of a
stumble in every 3-D subsequence Dl,ti:ti+T . We associate a
variable Sti:ti+T ∈ {0, 1} with every subsequence Dl,ti:ti+T

to represent the stumble, where Sti:ti+T = 1 if a stumble
occurs, and Sti:ti+T = 0 otherwise. We assume that a single
stumble could happen between ti and ti + T . We use a
probabilistic approach, and define the following probabilities:
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Fig. 1. A 13 seconds window of walking containing a stumble at 6.5,
seen from different locations on the body. The x-axis is in seconds, and the
y-axis is in g.

P (Dl,ti:ti+T |Sti:ti+T = 0) = Probability that Dl,ti:ti+T

is a normal walk pattern,
P (Dl,ti:ti+T |Sti:ti+T = 1) = Probability that Dl,ti:ti+T

is a stumble walk pattern.
The stumble detection problem now becomes a likelihood

test comparing
P (Dl,ti:ti+T |Sti:ti+T = 0), and P (Dl,ti:ti+T |Sti:ti+T = 1):

P (Dl,ti:ti+T |Sti:ti+T = 1)

P (Dl,ti:ti+T |Sti:ti+T = 0)
≥ τ, (1)

i.e. a stumble is detected in Dl,ti:ti+T when the likelihood
ratio exceeds a threshold τ . We move to the feature space and
we compute features from the raw acceleration Dl,ti:ti+T ,
and compute the likelihood test in the feature space. We
compute a feature vector fl,ti:ti+T , and get the following
likelihood test:

P (fl,ti:ti+T |Sti:ti+T = 1)

P (fl,ti:ti+T |Sti:ti+T = 0)
≥ τ. (2)

The first challenge is that the accelerometer measurements
depend on the orientation of the accelerometers. Moreover,
the accelerometers pick the gravity acceleration on the ver-
tical axis which changes depending on the orientation of the
sensor. Therefore, we first remove the gravity component
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Fig. 2. A 13 seconds acceleration time series. The upper figure shows the
raw acceleration, the red axis is at −1g picking up the gravity acceleration.
The lower figure show the acceleration after removing gravity by subtracting
the decaying average. The x-axis is in seconds, and the y-axis is in g.

Features
Maximum value of m

Non Linear Energy Operator of m
FFT of m

TABLE I
FEATURES USED.

by subtracting the decaying average from each dimension of
the raw accelerometer data [5], and then compute orientation
invariant features. The decaying average is given by

Dl,ti =
Dl,ti

L
+
L− 1

L
Dl,ti−1, (3)

where L is the decay factor. The important characteristic
of the decaying average is that it adapts quickly to the
orientation of the accelerometer, and removes the gravity
component from all of the axes. Figure 2 shows a 13
seconds 3-D time series, the upper figure shows the raw
data where gravity is picked up by the red axis. The lower
figure shows the acceleration data after subtracting out the
decaying average, the gravity component is gone. Note that
the decaying average was subtracted from all three axes.
After removing gravity, we extracted orientation-invariant
features. In fact, we extracted features from the magnitude
(the euclidean norm) of the [X, Y, Z] acceleration vector,
m =

∥∥X2 + Y 2 + Z2
∥∥, which is orientation-invariant. For

the detection of stumbles in a 3-D time series Dl, we
compute the features for the 3-D subsequences, Dl,ti:ti+T .
The features we used in this work are listed in Table I.
Figure 1 shows a 13 seconds window of walking containing
a stumble around the 6.5 seconds mark.

C. Stumbles as Anomalies

Anomaly detection refers to the problem of finding pat-
terns in the data that do not follow a normal or expected
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behavior. These abnormal patterns are called anomalies or
outliers. In our problem, a normal walk pattern represents
the normal behavior in the data, and a stumble pattern corre-
sponds to the anomaly. The key idea to our approach is that
since the stumbles are rare events, it is hard to collect training
data to model them. Therefore we use a semi-supervised
anomaly detection approach where we only train a model for
the normal walk patterns, and we detect stumble patterns as
deviations from this model [3]. Mathematically, we need to
estimate the density P (fl,ti:ti+T |Sti:ti+T = 0) from training
data, and detect stumbles if P (fl,ti:ti+T |Sti:ti+T = 0) is low
when Sti:ti+T = 1. The stumble detection will be based on
P (fl,ti:ti+T |Sti:ti+T = 0) as follows:

P (fl,ti:ti+T |Sti:ti+T = 0) ≤ τl, (4)

for some sensor specific threshold τl.

D. Estimating P (fl,ti:ti+T |Sti:ti+T = 0)

In this work, we use a parametric approach and we esti-
mate P (fl,ti:ti+T |Sti:ti+T = 0) by a Gaussian distribution:

P (fl,ti:ti+T |Sti:ti+T = 0) = (2π)
− k

2 |Σ|−
1 2
e−

1
2 (f−µ)

′
Σ−1(f−µ) (5)

where the parameters are the mean µ and the covariance
matrix Σ. k is the dimension of the feature vector f , i.e. the
number of features used. We estimate µ and Σ from training
data. We used a Gaussian distribution since the different steps
of a normal walk, represented by P (fl,ti:ti+T |Sti:ti+T =
0), are similar with small variations from one step to the
other. Furthermore, we build a user-specific system where
we estimate P (fl,ti:ti+T |Sti:ti+T = 0) for each user from
their training data.

E. Setting the threshold τl and choosing T

After estimating P (fl,ti:ti+T |Sti:ti+T = 0), we need to set
the threshold τl. Again, τl is the threshold that corresponds
to each location l ∈ {1, . . . L}. We choose τl in order to
control the false alarm rate of the stumble detector. Since the
stumbles are rare events, there is a high probability that a lot
of the detected stumbles are actually normal walk patterns.
Thus, we would like to control the false alarm rate, and we
choose to set τl in order to achieve a desired false alarm rate
FARl. Note that FARl also depends on the sensor location
on the body.
T is the time length used in parsing the 3-D time series

Dl, or in other words T is the time length of the 3-D
subsequences Dl,ti:ti+T . The choice of T depends on the
application of the stumble detection. For example, in [10]
and [21] a stumble detection system was built for people
with prosthetic legs. The goal was to detect stumbles in real
time and right when they happen to actively move the leg
accordingly, and prevent the fall from happening. In their
application, T needed to be in the order of milliseconds,
since the leg had to be moved quickly to help with the
recovery from the stumble and prevent the fall. T was chosen
to be 100ms in [10], and as low as 10ms in [21]. In other
applications, doctors could be interested in monitoring their
patients not in real time, and statistics of stumbles calculated

Fig. 3. Obstacle used

Fig. 4. Sensor positions

at the end of the day, or the week. In these applications, the
stumble detection is done in post processing of the data, and
a larger T could be used (now in the order of seconds). In
our work, we chose T = 4 seconds. Another parameter that
is associated with T is the step size used in parsing Dl, to
get the corresponding subsequences Dl,ti:ti+T . We choose
non-overlapping subsequences, and choose the step size to
be 4 seconds.

IV. EXPERIMENTS

A. Data Collection

Our system consists of Gulf Coast Data Concept X6-
2 mini tri-axial accelerometer sensors [9]. A total of 7
accelerometers were placed on various parts of the subjects’
bodies; they were placed on the left and right wrist, the
middle of the chest, left and right pocket, and left and right
ankle (figure 4). The sensors were set to collect data at a rate
of 160 Hz with a 16-bit data resolution and ±6g acceleration
range.

In order to simulate stumbles, we used a simple platform
consisting of a 1 x 8 x 30 inch wooden base plank attached to
two stacked 2 x 4 x 30 inch wooden studs (Figure 3), which
created a low vertical barrier for test subjects during gait.
Test subjects were blindfolded and listened to music through
headphones so that they do not see or hear the person setting
the obstacle in front of them, and to provide distraction. The
volunteers were then told to walk in a straight line. The
obstacle was placed in front of them at random times but
no less than ten seconds after the start of a walk interval,
whereupon the subject would come into the vicinity of the
obstacle and either stumble and recover or walk over the
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Subject Number of Stumbles
1 7
2 10
3 12
4 11
5 11
6 12
7 14
8 10
9 13

Total 100

TABLE II
NUMBER OF STUMBLES FOR EACH SUBJECT.

obstacle and continue walking. After the stumble, subjects
would continue walking for one minute or more. The process
was repeated about twenty times per test subject. Stumbling
was followed by about 5 minutes of normal walk. Two
individuals walked with the test subject to secure their safety,
and prevent them from falling. The experiments took place
on an open grassy court, and a video was recorded for ground
truth. The data was collected from 9 test subjects (7 Males
and 2 Females). We got a total of 100 stumbles, and table
II shows the number of stumbles for each subject.

B. Limitations of the experiments

A main obstacle in designing activity monitoring systems
is the validation process of the system. The system needs
to be validated on people in realistic situations, as close
as possible to everyday life. A data set should be collected
and labeled for the real stumbles, and this procedure should
be done for many people. This is very challenging, and
we thought that a reasonable first step towards this goal
is to collect data in a controlled environment and simulate
stumbles that are easy to be labeled. Our experiments and
data sets suffer from the following limitation:

1) One type of stumbles: We only simulate one type of
stumble; stumbling on a fixed obstacle. Other stum-
bling types we did not consider include: stumbling on
a cord, stumbling on a moving object, and slipping.

2) Controlled environment: The data sets are collected in
a controlled environment.

Despite these limitations, the data are more representative
than other experiments used in the literature. For example,
[10] and [21], also use a controlled environment, but use
a treadmill where they can control the speed to produce
stumbles. The subjects were asked to walk on the treadmill,
and stumbles were created with unexpected sudden changes
in the treadmill’s speed.

V. RESULTS

In this section, we present the stumbling detection results
for our system, on the data described in Section IV. We used
half of the data for training the stumbling detector, and half
of it to test it. In rare event detection, it is not enough to look
at accuracy and probability of misdetection since the events
we are trying to detect are rare, and therefore the accuracy
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Fig. 5. ROC curve. The chest achieves a detection of 99% with a false
alarm of 0.2%.

and probability of misdetection would be dominated by the
non-rare events. These issues arise in classification problems
when one class has far fewer points than the other classes.
To resolve these issues we use the following quantities:

FAR = Number of normal subsequences detected as stumbles
Total number of stumbles (6)

Precision = Number of stumble subsequences detected as stumbles
Number of all subsequences detected as stumbles (7)

Recall = Number of stumble subsequences detected as stumbles
Number of stumble subsequences (8)

In Figure 5, we present the performance of our system as
a ROC curve, which is probability of detection versus false
alarm rate. We evaluate each of the 7 locations, and show
each as a curve. We see that the chest performs better than all
the other locations; its ROC curve is higher and to the left of
all other locations. With one chest sensor we could achieve a
stumble detection of 99%, with a false alarm rate of 0.2%. In
Figure 6, we show the precision-recall plots for our stumble
detection system. We also see that the chest outperforms the
other locations for the accelerometer.

There are two main reasons why the chest performs better
than all the other locations. The first one is that the chest
is the highest location from the ground, thus the shocks
produced by walking get absorbed by the body and are
diluted by the time they reach the chest. We can see this
phenomenon in Figure 1. The walk peaks are smaller in the
acceleration measured at the chest and the stumble pattern
stands out more. The second reason is that the chest sensor
is placed in the middle of the body, whereas all the other
locations is either on the left or on the right of the body. We
noticed that if a stumble happens to the left leg, the right
side of the body might not pick up the stumble acceleration
pattern, and vice versa. The only limitation of placing the
accelerometer on the chest is that it could be hard to mount
it on the chest, it is more feasible to place it in one of
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Fig. 6. Precision Recall Curve. The chest achieves a precision of 99%
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the pockets or clip it to the belt at the waist. With the
method used, the pockets were not good locations to detect
the stumbles, but we plan to extend this work and use more
powerful methods to be able to detect the stumbles more
reliably at the pockets and the waist.

VI. CONCLUSION

In this paper we studied the problem of detecting stumbles
using a single accelerometer worn on the body. We evaluated
seven locations and found that the chest is the best location
to detect stumbles. Our approach learns a statistical model
to characterize normal walking, and detects stumbles as
anomalies or deviations from this model. We show that
stumbles could be detected with a 99% accuracy and 0.2%
false alarm rate with one sensor worn on the chest. Our
system is personalized where we build a detector for each
user tailored to their normal and stumble walking patterns.
We described our system, and how we simulated the stumbles
on an outdoor terrain. We also provided a big data set for 9
people, containing a total of 100 stumbles and more than 45
minutes of normal walking. For future work, we plan to take
this study in three directions. The first direction is to collect
more realistic data, containing more types of stumbles. The
second direction is to collect data for elderly patients who
have a high risk of falling. We plan to monitor them over a
long period of time and use our current detector, based on
controlled experiments, to help with the labeling of the real
life data set. We believe that running our current detector
on a real life data set would detect potential stumbles that
could be combined with the information from the subject
to reliably label the real stumbles. The third direction is
more technical, and consists of developing more powerful
detection techniques that could be used to detect stumbles
from more plausible placements of the accelerometers, such
as pockets. We hope that this work takes the research on
stumble detection a step further towards the goal of realistic
stumble detection systems, and towards understanding the
relationship between stumbles and falls.
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