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Abstract— We describe a method for modeling the closure
of the Mitral Valve (MV) and to compute realistic strain and
stresses in MV tissues. This informs preoperative planning by
allowing a surgeon to evaluate various MV repairs options.
The modeling method exploits individualized (patient-specific)
anatomical structure recovered from real-time 3D echocardio-
graphy (RT3DE). This study utilizes hyperelastic models of the
MV tissues and employs patient specific leaflets, chordal length
assessment and annulus shapes. We report experiments on ten
intraoperative test cases, where we compute strain and stresses
using several different tissue models from MV empirical studies
by May-Newman [1] and Holzapfel [2].

I. INTRODUCTION

Mitral valve modeling has a number of applications in di-

agnostics and computer assisted surgery. The mitral valve is a

critical structure found in the left heart and located between

the left atrium (LA) and the left ventricle (LV), ensuring

unidirectional blood flow from LA to LV. It is composed

of an annulus with two leaflets tethered through a system

of chords (termed chordae tendineae) attached to papillary

muscles. MV surgery (valvuloplasty) is a complex interven-

tion with different repair options. Therefore simulation tools

would be of critical help to surgeons to elucidate which

valvuloplasty option is most likely to improve outcome. Our

simulation-based planning process starts with an open 3D

valve structure at diastole, derived by segmenting RT3DE

imagery and edited by a surgeon to remove artifacts and

reflect the planned surgical modifications [3], [4]. From the

open valve, our system predicts, via physics-based modeling

and simulation, the closed valve configuration at systole to

characterize the MV leaflets’ ability to competently coapt,

and the associated strains and stresses for this closed config-

uration, when the system is under systolic pressure.

Much progress has been made in MV modeling [5]. The

recent availability of real time echographic 3D data has now

made possible the goal of MV simulation using patient-

specific anatomy, as well as the possibility of benchmarking

against ground truth datasets [4], [6], [7], [8], [9], [12], [13].

Unlike our prior work in [4], which used linear elastic

constitutive models, this study uses a hyperelastic tissue

models to infer resultant stresses. The contributions of this

paper are: the joint use of hyperelastic models and patient

specific anatomy to predict the closure state and the stresses

associated with a specific valve repair. This paper extends

our study in [10] in several ways: we now use patient

specific annulus shapes, we estimate patient-specific chordal
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length factors, we extend our testing use cases from an

original sample set of two to ten, and we test using several

elastic energy models and parameter sets that were derived

empirically by studies conducted by May-Newman in [1] and

Holzapfel in [2].

II. METHOD

A mesh representing the patient-specific MV anatomy is

first derived by first performing segmentation using thin

tissue detection [11]. At each node of the mesh we prescribe

either displacements or forces. Modeled forces include those

due to fluid pressure, hyperelastic stress, collision with other

portions of the mesh, and tethering of the valve to the chordae

tendineae. The initial configuration of the open mesh is used

to specify the reference energy point for external and internal

forces. The steady state configuration of the valve system

under load at a closed position, where all forces are at

equilibrium, is then found by minimizing the system’s total

energy.

Our prior work focused on predicting the closed con-

figuration of the mitral valve from an open configuration

obtained from segmented 3D ultrasound imagery. Given this

capability, it is possible to predict the closure of a modified

valve by making modifications to the segmented valve model

which simulate the changes to the valve structure made dur-

ing a valvuloplasty procedure and assess resultant coaptation.

However, besides the coaptation of the valves, other valuable

information may be obtained from the current modeling

approach. In particular, high leaflet stress may result in

decreased longevity and hence the ability to predict the

stresses induced in the leaflet may also inform valvuloplasty

decisions. In the present work we focus on modeling of

stresses and strains within the mitral valve leaflets.

Following our prior work [10] we use an energy minimiza-

tion approach to find the closed valve configuration from an

initial open configuration. The potential energy minimized is

Φ =
∑

all nodes i

φX

i + φT

i + φC

i + φE

i , (1)

where the terms represent the external, tethering, collision,

and elastic energy respectively. The tethering and collision

terms remain unchanged from those previously reported in

[4]. In this study, the force acting on the facets by the fluid

pressure is now directed along the facet normal, and the

elastic term is modified to allow for hyperelastic material

behavior other than the St. Venant-Kirchhoff model.

Hyperelastic materials are a class of elastic materials for

which the stress-strain relationship is derivable from a strain
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energy density function, Ψ. The hyperelastic models used in

this paper are

1) St. Venant-Kirchoff (SVK)

ΨS =
1

2
trSE, (2)

where

S =
E

1 + ν

[
E+

ν

1− 2ν
(trE)1

]
, (3)

for Young’s modulus E, and Poisson ratio ν. A more

extensive treatment of this model is provided in [3].

2) May-Newman-Yin (MNY)

ΨM = c0

[
ec1(I1−3)2+c2(λ−1)4 − 1

]
, (4)

where I1 = trC is the first invariant of the right

Cauchy-Green deformation tensor and λ =
√
â0Câ0 is

the stretch in the â0 direction. The vector â0 is chosen

parallel to the orientation of the collagen fiber to model

the increased stiffness in the fiber direction relative to

the transverse directions. The values of the coefficients

ci are taken from [1].

3) Holzapfel

ΨH = c′0

[
ec

′

1
(I1−3)2+c

′

2
(λ2

−1)2 − 1
]
, (5)

with I1 and λ as above, and the coefficients c′
i

are

taken from [2].

The leaflets are modeled as thin membranes using a plane-

stress assumption.

Four canonical situations are typically reported when

characterizing the stress-strain behavior: the first is for equib-

iaxial deformation in which the membrane is deformed in

directions parallel and perpendicular to the fiber direction

equally. The second is off-biaxial in which the membrane

is deformed parallel and perpendicular to the fiber direction

with the perpendicular deformation equal to 1.5 times the

parallel deformation. The third is parallel strip-biaxial in

which the membrane is deformed parallel to the fiber di-

rection while keeping the perpendicular deformation fixed at

+15%. The fourth is perpendicular strip-biaxial in which the

membrane is deformed perpendicular to the fiber direction

while keeping the parallel deformation fixed at +15%.

Representative stress-strain curves are shown in Figs. 1

and 2 for the three hyperelastic laws and for the various

MNY specimens. The MNY law with mean parameters and

the Holzapfel laws agree for strains greater than approx.

5%, while the SVK parameters were chosen to cross the

equibiaxial MNY mean curve at approximately 15% and

hence is much stiffer for small strains than either of the Fung-

type laws. The considerable variation in stiffness among the

MNY specimens is evident in both figures.

Parameters used for each of the models are shown in

Tables I and II. The MNY parameters are taken from [1],

and both the values obtained for individual specimens and the

average parameters are modeled. The Holzapfel parameters

are from [2]. The parameter values for the SVK model are

TABLE I

ANTERIOR LEAFLET MATERIAL PROPERTIES.

Case c0 (Pa) c1 c2 d (mm)

CP01 1010 2.59 1376.9 0.68

CP02 79 1.25 1320.6 0.86

CP03 181 7.01 626.5 1.40

CP04 214 4.90 1602.9 0.86

CP05 105 5.23 1991.6 0.98

CP06 203 1.76 833.0 0.78

CP07 53 6.31 1943.2 0.76

CP08 2171 2.19 1408.8 0.48

MNY 399 4.325 1446.5 0.85

Holzapfel 52 4.63 22.6 0.85

SVK E = 400 kPa, ν = 1/2 1

TABLE II

POSTERIOR LEAFLET MATERIAL PROPERTIES.

Case c0 (Pa) c1 c2 d (mm)

CP01 519 2.65 103.1 0.57

CP02 278 5.23 478.8 0.55

CP03 268 4.28 4.8 0.44

CP04 762 2.33 116.8 0.85

CP05 1507 2.91 1215.7 0.41

CP06 399 2.14 320.3 0.44

CP07 4176 2.16 249.2 0.52

CP08 426 6.74 81.1 0.43

MNY 414 4.848 305.4 0.53

Holzapfel 171 5.28 6.46 0.53

SVK E = 100 kPa, ν = 1/2 1

Fig. 1. Stress-strain relationship for the anterior leaflet for equibiaxial
deformation varying between −50% and +50%. Stress parallel to the fiber
direction (σaa) is plotted versus strain parallel to the fiber direction (εaa).
Curves represent hyperelastic model with particular parameter sets, MNY
specimens CP01 through CP08 (black, dark gray, light gray, blue, dark
blue, green, red, and dark red respectively), MNY “mean” (cyan), Holzapfel
(magenta), SVK (yellow).

chosen to match the MNY mean curve for deformation of

+15%.
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Fig. 2. Stress-strain relationship for the anterior leaflet for off-biaxial
deformation with parallel deformations varying between −50% and +50%.
Stress parallel to the fiber direction (σaa) is plotted versus strain parallel to
the fiber direction (εaa). Curves are as described in Fig. 1.

III. EXPERIMENTS

We use intraoperative RT3DE transesophageal full volume

sequence of the left heart. The RT3DE acquisition was

performed using an iE33 Philips console with a Philips X7-

2t Live probe (Philips Medical Systems, Bothell, WA). The

RT3DE cube sizes were 208×208×224. The RT3DE probe

was operated at frequencies ranging from 3 to 5 MHz and

frame rate up to 50 Hz. The pixels’ spatial resolutions were

respectively ranged between 0.4 to 0.8 mm. The chordal

lengths and the annulus were personalized (more details on

this and other methods and acquisition are provided in [3]).

Benchmarking was performed using ten RT3DE cases

and was carried out by computing absolute errors between

(a) the closed valve configuration predicted at systole from

the segmented open valve captured at diastole, and (b) the

closed valve segmented during systole. We found on average

mean absolute errors ranging from 1.2 to 1.9 mm across the

different models.

The RT3DE-based closed state simulations resulted in

physiological strains and plausible stresses which are con-

sistent with other modeling and empirical studies in [1],

[5], [12], [13]. Fig. 3 shows the distribution for the radial

strains on the predicted closed valve for one of the cases.

Fig. 4 shows the distribution of the radial stress. Box plots

showing median, standard deviation and extremal values for

anterior and posterior stress are shown in Figs. 5(a) and 5(b).

Similarly, strain is shown in Figs. 6(a) and 6(b).

The SVK model underpredicts the strain relative to the

Fung-type models. This is to be expected as this model is

much stiffer for small displacements than the others. The

stress predicted by the SVK model is consistent with the

other models.

IV. CONCLUSIONS

We report on a new RT3DE-guided physics-based mod-

eling and simulation procedure to predict the stresses and

strains for a closed state MV from an open MV configuration

exploiting a shape finding optimization method. Testing

with clinical data shows the ability to predict stress/strain

values that are consistent with prior published modeling and

empirical studies.
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Fig. 3. Radial Almansi strain for each facet overlaid on the simulated
closed-state mesh. The starting mesh consisted of approximately 21,000
facets, and the simulation was run using the average of May-Newman’s
hyperelastic parameters.
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Fig. 4. Radial Cauchy stress for each facet overlaid on the simulated
closed-state mesh. The starting mesh consisted of approximately 21,000
facets, and the simulation was run using the average of May-Newman’s
hyperelastic parameters. Note that the color-scale is in units of log10 Pa.
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Fig. 5. Box plots depicting the radial Cauchy stress for the anterior (a)
and posterior (b) leaflets across all experiments tested, as well as for each
set of parameters (as specified on the x-axis).
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