
A Program Code Generator for Multiphysics Biological Simulation
using Markup Languages

Akira Amano, Masanari Kawabata, Yoshiharu Yamashita, Florencio Rusty Punzalan,
Takao Shimayoshi, Hiroaki Kuwabara, Yoshitoshi Kunieda

Abstract—To cope with the complexity of the biological
function simulation models, model representation with de-
scription language is becoming popular. However, simulation
software itself becomes complex in these environment, thus, it is
difficult to modify the simulation conditions, target computation
resources or calculation methods. In the complex biological
function simulation software, there are 1) model equations,
2) boundary conditions and 3) calculation schemes. Use of
description model file is useful for first point and partly
second point, however, third point is difficult to handle for
various calculation schemes which is required for simulation
models constructed from two or more elementary models. We
introduce a simulation software generation system which use
description language based description of coupling calculation
scheme together with cell model description file. By using this
software, we can easily generate biological simulation code with
variety of coupling calculation schemes. To show the efficiency
of our system, example of coupling calculation scheme with
three elementary models are shown.

I. INTRODUCTION
Simulation models needs to have flexible declarative de-

scription to allow changes in boundary conditions or opti-
mization of parameters in different computational environ-
ments. This flexible description is important in coupling
simulations where two or more models are used. Thus, a
declarative way of describing procedural information of the
coupled mathematical models in coupling of multiphysics
phenomena is useful. This declarative design allows flexible
representation of coupling simulations and may simplify
using various hardwares.
To realize declarative description of simulation models,

some description language based modeling was proposed and
many models are written in such languages. One of the most
famous one is CellML [1] which is intended to be used
for describing cellular function models. There is CellML
repository [2] and many models are already accumulated.
PHML[3] (formerly known as isML) is another solution to
describe cellular level models and also wide range of models
in biological phenomena. SBML[4] is description language
for metabolic model description which is now considered
standard in systems biology area. Another important area is
field description where FieldML[5] is now being developed.
These languages give both functional and physiological

simulation capability. To use model written with a description
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language, some simulation software which can handle such
file is necessary [6][7][8][9]. However, in order to fully
simulate complex models composed of two or more ele-
mentary models, numerical solutions for ordinary differential
equations (ODE) and a coupling calculation scheme needs to
be included in the simulation code. The coupling calculation
scheme enable the integration of different phenomena such
as cardiac cell contraction and hemodynamics. Note that if
we consider constructing a large scale simulation model from
several elementary models, it will be difficult to ensure that
the model is correct since the constructor may not be a
professional researcher in all the elementary model areas.
To ensure the correctness of the constructed model, it is
important to use each elementary model as is.
In some case, researchers want to evaluate more sophis-

ticated ODE solving scheme for speedup or stabilizing the
calculation. In other case, researchers want to use parallel
computation resources for calculation of large scale simu-
lations. In another case, the biological simulation model is
now becoming very complex and in some case, coupling
simulation between different phenomena such as structural
simulation and fluid simulation are necessary. In all of
these case, it requires special knowledge about numerical
calculation or programming and also time consuming process
to modify and debug the simulation program. This is quite
difficult for biological or medical researchers.
Accordingly, the primary goal of this study is to define an

XML-based description language that can represent model
coupling schemes in multiple phenomena simulation. We
have recently proposed a description language to describe
complex ODE solving scheme for single biological model
i.e. single set of ordinary differential equation which can only
produce program with single loop structure [10]. However,
coupling calculation of multiple models involves multiple
temporal streams in the calculation scheme. Therefore, the
proposed description language uses recurrence relation for-
mula to describe the relationship between different biological
models. This coupling schemes description has applications
in simulations where the output of one model calculation
serves as the input of another model, which in turn gives
variable values necessary in the calculation of the first
model. The relationship between a cardiac muscle model
with sarcomere dynamics [11] and the hemodynamics of
the cardiovascular system [12] serves as an example of such
coupling.
The coupling scheme described in a description language

serves as the primary system input, together with CellML
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files for describing physiological models, to generate biolog-
ical simulation codes in different programming languages.
Possible output codes include parallel programs for GPU
(graphics processing unit) computing.
In this paper, we propose a system which can auto-

matically generate complex simulation program by using
coupling calculation schemes together with declarative de-
scription models.

II. METHOD

A. Declarative Description of Multiphysics Simulation
Model

We propose a declarative description language of coupling
calculation schemes by extending the previously proposed
Time Evolution Calculation Markup Language (TecML)
[10]. In the previous TecML, the variables at time tn and
tn+1 are implicitly defined as input and output variables,
however, in the extended description, these are explicitly
declared as indexed variables of certain calculation step
indices.
A time evolution calculation procedure can be described as

a recurrence relation between variables at time tn and tn+1.
Together with an initial value and a termination condition
of the recurrence relation, we can construct a while loop for
the recurrence relation. Consequently, we based the coupling
calculation scheme description language on the recurrence
relation.
Consider an equation dx/dt = k = −x as a model, we

can describe a time evolution calculation by the Euler method
using recurrence relation as follows.

x0 = 1.0 (1)
kn = −xn (2)

xn+1 = xn + kn × δ (3)
y = xn if (n = 100) (4)

Note that the above description is a declarative description,
thus it is flexible in combining with various boundary con-
ditions or other model equations. From this relation, we can
construct a calculation procedure as follows.

x[0] = 1.0;
n = 0;
do {

k[n] = -x[n];
x[n+1] = x[n] + k[n] * dt;
n = n + 1;

} while ((n-1) != 100);
y = x[n];

If we consider two variables calculated with nested double
while loop, outer loop variable can be represented by a
single index variable (e.g. xn), while inner loop variable
can be represented by a double index variable (e.g. yn,m).
By analyzing the dependencies among included variables in
a recurrence relation equations, we can determine the loop
structure.

TABLE I
TECML VARIABLE TYPES

Variable Type Definition
recurvar: Variables calculated by recurrence relations
arithvar Arithmetic variables
constvar Constants
timevar Time variable
step Step variable for recurrence relation
condition Condition for terminating recurrence loop

B. Coupling Simulation Code Generation System
The TecML file serves as one of the inputs in the code

generation system to create the simulation program. Two
other inputs are necessary for generating code, namely, the
CellML and RelML (Relation Markup Language) files [10].
CellML allows the mathematical description of biological
models. This includes information such as cell structure,
equations for underlying processes and boundary conditions.
RelML is a language for describing the correspondence
between variables in the CellML model file and the variable
types in an ODE numerical solution or a coupling calculation
scheme described in the TecML file. Table I lists the variable
types found in the TecML file and connected by RelML to
the physiological model variables.
The code generation system uses the TecML and RelML

files to configure the sets of recurrence relation equations
describing the time evolution of the variables in the biolog-
ical models. These sets of equations include the conditions
for terminating the recurrence relations described by RelML.
The while loop in the generated program code calculates the
variables in a CellML model until the termination condition
of the calculation is reached.
Once the sets of equations are generated, the loop structure

is analyzed by variable dependency analysis. For a single
loop structure corresponding to a certain time index, related
equations are classified into 6 groups, and given attributes
to the equations. They are pre, initial, inner, loopcondition,
final and post, where pre and post are equations to be
calculated before and after the loop, initial is initialization of
loop related variables, inner is inner equations of the loop,
loopcondition is a terminating condition and final is variable
assignment equations of the resulting loop variables.
If there are two or more loop structures in a scheme, we

can determine which index structures a loop inside or parallel
to the other loop. In the case of double nested loop, equations
whose attribute is inner for the index 1 can have above 6
types of attributes for index 2.
This dependency analysis is based on the algorithm pro-

posed by Pantelides [13] which analyze the calculation order
from a set of simultaneous equation set. The algorithm first
generates a bipartite graph where the equation number in
the left hand side is linked with the variables in the right
hand side which appear in the equation. By calculating the
maximum matching from left hand side to right hand side,
we can determine which variable should be calculated by
which equation by applying the Tarjan’s algorithm [14].
The code generation system creates the executable code

according to the dependency analysis result. By looking up
the attributes of each equation together with the analyzed
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CellML1: Cardiac Cell Model

dT/dt = kT = f1(L,T)

CellML2: Blood Circulation 
         Model

dV/dt = kV = f2(P)

CellML3: Heart FE Model

V = f3(P, T)
L = f4(V)
nP = fpnext(P, V, Vtarget, P1, P2)
nP1 = P
nP2 = P1

e = |V - Vtarget|

L, T

V, P

Fig. 1. The coupling of three CellML models. CellML1 contains the
cardiac contraction model while CellML2 contains the hemodynamic model.
CellML3, which is coupled with the other CellML models, describes the
relationship between left ventricular volume, pressure, and cell state.

TecML1
Variable definition
output: {ξend, ξrend, ιrend}
recurvar: {ξ[n], ξ[n], ξ[n + 1], ξr[n][m], ξr1[n][m], ξr[n][m + 1]}
arithvar: {κ[n], ι[n], ιr[n][m]}
constvar:{ξinit, τinit, ζ, ζr, δ}
recurequ: {φ(ξ[n], ι[n], τ [n], ζ), φr(ξr[n][m], ιr[n][m], ζr}
arithequ: {γ(ξ[n], ι[n], τ [n], ζ), γr(ξr[n][m], ιr[n][m], ζr}
step:{n, m}
condition: {cond, condr}
timevar: {τ [n], τ [n + 1]}
Equations
ξ[0] = ξinit

τ [0] = τinit

ι[n] = γ(ξ[n], ι[n], τ [n], ζ)
κ[n] = φ(ξ[n], ι[n], τ [n], ζ)
ξ[n + 1] = ξ[n] + (κ[n] × δ)
τ [n + 1] = τ [n] + δ
ξend = ξ[n] if (cond)
ξr[n][0] = ξrinit

ιr[n][m] = γr(ξr[n][m], ιr[n][m], ζr)
ξr1[n][m] = φr(ξr[n][m], ιr[n][m], ζr)
ξr[n][m + 1] = ξr1[n][m]
ξrend = ξr[n][m] if (condr)
ιrend = ιr[n][m] if (condr)

Fig. 2. The variable types, recurrence relation equations and a coupling
scheme constructed from an ODE solver (Euler method) and a convergence
loop described in the TecML file.

dependency structure. If certain part of the equations con-
struct simultaneous equation system, the code generation
system automatically generates root finding solver code for
corresponding equations which is still a simple algorithm in
the current implementation. Note that the recurrence relation
generated by our system and the corresponding program
code are not optimized, thus it requires large memory space
and computation time in the original form. However, since
the recurrence relations are declarative description, we can
use many optimization techniques, and also we can use
HPC optimization techniques for optimizing our generated
program codes.

III. COUPLING SIMULATION EXAMPLE
Here, we show a coupling simulation example that uses

three model (CellML) files together with a coupling calcu-
lation scheme (TecML) and a relation (RelML) file.
The example CellML files are based on the coupling

calculation of heart motion where the contained equations are

RelML
cellml: cellml1 = ’CellML1’, cellml2 = ’CellML2’,

cellml3 = ’CellML3’
tecml: ’TecML1’
link: cellml1:t = cellml2:t, cellml2:t = cellml3:t,

cellml1:T = cellml3:T
timevar: τ = {cellml1:t}
recurvar: ξ = {cellml1:V , cellml2:T},

ξr = {cellml3:Vtarget, cellml3:P , cellml3:P1, cellml3:P2},
ξr1 = {cellml3:Vtarget, cellml3:nP , cellml3:nP1,

cellml3:nP2}
arithvar: κ = {cellml1:dT/dt, cellml2:dV/dt},

ι = {null}, ιr = {cellml3:V , cellml3:L, cellml3:e}
constvar: ζ = {null}, ζr = {null}, τinit = {0.0},

δ = {0.001}, ξinit = {Vinit, Tinit},
ξrinit = {cellml2:V , cellml2:P [n − 1],

cellml2:P [n − 1], cellml2:P [n − 1]}
condition: cond ={tecml:n = 1000},

condr ={cellml3: e[n][m] < ε}
output: ξrend = {null, cellml3:P [n], null, null},

ιrend = {null, cellml3:L[n], null}

Fig. 3. RelML file information showing the variable correspondence in
the variables of the TecML file and the CellML models. The initial and
termination (boundary) conditions are also specified.

shown in Fig.1. CellML1 represents a cardiac cell contraction
model (Negroni Lascano model [11]) where the variable L
represents cell length, and T represents cell status (named
from the contraction related molecule Troponin). CellML2
represents a blood circulation model (Heldt model [12])
which calculates volume change (dV/dt) from blood pres-
sure P . CellML3 represents Finite Element Method (FEM)
calculation which gives heart volume V from pressure P and
cell status T . Cell length L is calculated from heart volume
V . The remaining part represents a convergence step which
is used to calculate heart pressure from heart volume. In this
example, this calculation is necessary since FEM used in this
example can only calculate shape from applied pressure and
force.
The example TecML file contains the time evolution

calculation and a convergence calculation schemes for the
coupled CellML models (Fig.2). The recurrence relation
index variables n and m are also declared in the file.
The example RelML file describes the correspondence

between the variables in the CellML files and the TecML file
(Fig.3). We also have to describe the initial values of certain
variables and the termination conditions for the recurrence
relations described in the TecML file.
From these input files, we can obtain the declarative

description of recurrence relations as follows.

V [0] = Vinit (5)
T [0] = Tinit (6)

where Vinit and Tinit are the initial volume and cell status,
respectively. Since the derivatives of both V [n] and T [n] are
calculated from L[n] and P [n] which appear as results of
CellML3 calculation, the convergence part is calculated in
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the next part.

Vtarget[n][0] = V [n] (7)
P [n][0] = P [n − 1] (8)
P1[n][0] = P [n − 1] (9)
P2[n][0] = P [n − 1] (10)
V [n][m] = f3(P [n][m], T [n]) (11)
L[n][m] = f4(V [n][m]) (12)
e[n][m] = |V [n][m] − Vtarget[n][m]| (13)

nP [n][m] = fPnext(P [n][m], V [n][m],
Vtarget[n][m], P1[n][m], P2[n][m])(14)

nP1[n][m + 1] = P [n][m] (15)
nP2[n][m + 1] = P1[n][m] (16)

Vtarget[n][m + 1] = Vtarget[n][m] (17)
P [n][m + 1] = nP [n][m] (18)
P1[n][m + 1] = nP1[n][m] (19)
P2[n][m + 1] = nP2[n][m] (20)

P [n] = P [n][m] if (e[n][m] < ε) (21)
L[n] = L[n][m] if (e[n][m] < ε) (22)

The pressure value P [n][m] and the cell length L[n][m]
are passed on once the condition for e is reached. These
values along with the current volume V [n] and cell (troponin)
status T [n] is used for the recurrence relation calculations of
CellML1 and CellML2 as shown by the following equations.

kT [n] = f1(L[n], T [n]) (23)
kV [n] = f2(P [n]) (24)

T [n + 1] = T [n] + kT [n] × δ (25)
V [n + 1] = V [n] + kT [n] × δ (26)

Tend = T [n] if (n = 1000) (27)
Vend = V [n] if (n = 1000) (28)

In this example, the while for the first model terminates
and the final output of the calculation is passed on as input
for another CellML model. The next calculation, described
by the separate but coupled model, is implemented using a
separate while loop. The output of this second while loop
is then fed back into the first model as input. Finally, from
the above recurrence relations, we can generate program to
calculate every variable at every time point as Fig.4.

IV. CONCLUSIONS

We proposed a coupling calculation description language
together with biological function simulation program code
generator using model and coupling calculation scheme
description file written by proposed language. By using
this system, we can easily generate simulation program of
complex combination of elementary models such as cell
models, ventricular geometry models and circulation models.
The process of combining multiple models requires vari-

able matching based on the biological knowledge. This

// Executable Code
V[0] = Vinit;
T[0] = Tinit;
n = 0;
do {

Vtarget[n][0] = V[n];
P_3[n][0] = P[n-1];
P1[n][0] = P[n-1];
P2[n][0] = P[n-1];
m = 0;
do {

V_3[n][m] = f3(P_3[n][m], T[n]);
L_3[n][m] = f4(V_3[n][m]);
e[n][m] = fabs(V_3[n][m] - Vtarget[n][m]);
nP[n][m] = fPnext(P_3[n][m],V_3[n][m],Vtarget[n][m],

P1[n][m],P2[n][m]);
Vtarget[n][m+1] = Vtarget[n][m];
nP1[n][m+1] = P[n][m];
nP2[n][m+1] = P1[n][m];
m = m + 1;

} while(!(e[n][m-1] < eps));
P[n] = P_3[n][m-1];
L[n] = L_3[n][m-1];
kT[n] = f1(L[n], T[n]);
kv[n] = f2(P[n]);
T[n+1] = T[n] + kT[n] * delta;
V[n+1] = V[n] + kV[n] * delta;
n = n + 1;

} while(!((n-1)==1000));
Tend = T[n-1];
Vend = V[n-1];

Fig. 4. The generated executable code for the coupling simulation.

process can be supported by the use of biological ontology
database which will be one of our future works.
The part of the system is publicly available in our project

website[8], and the full system will be publicly available in
the future.
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