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Abstract— A new computational multiscale model of glioblas-
toma growth is introduced. This model combines an agent-based
model for representing processes on the cellular level with a
molecular interaction network for each cell on the subcellular
scale. The network is based on recently published work on
the interaction of microRNA-451, LKB1 and AMPK in the
regulation of glioblastoma cell migration and proliferation. We
translated this network into a mathematical description by the
use of 17 ordinary differential equations. In our model, we
furthermore establish a link from the molecular interaction
network of a single cell to cellular actions (e.g. chemotactic
movement) on the microscopic level. First results demonstrate
that the computational model reproduces a tumor cell develop-
ment comparable to that observed in in vitro experiments.

I. INTRODUCTION

The present work introduces a novel computational model
of glioblastoma (GB) growth. GB account for about one half
of all gliomas (tumors arising from glial cells), and thus for
10% of all brain tumors in adults [1]. Despite all effort in
therapy research the median survival is about 12 months [2].

Many cancer cells utilize glucose to pursue proliferation
[3]. Under unfavorable glucose conditions they migrate to
more beneficial sites to avoid metabolic stress. Godlewski
et al. [4] showed that the microRNA-451 (miR-451) reg-
ulates GB cell migration and proliferation in response to
different glucose conditions. MicroRNAs are short (about
22 nucleotides long) non-coding RNAs. They regulate the
expression of about 60% of all human genes at the posttran-
scriptional level and microRNA dysregulation was found to
be directly involved in the development of human cancer [5].

Godlewski et al. [4] discovered that the level of miR-451
in GB cells is elevated under normal glucose conditions and
decreased in a low glucose environment. Furthermore, they
showed that miR-451 targets the mRNA of MO25 (mouse
protein 25) that forms a complex with LKB1 (liver kinase
B1) and STRAD (sterile-20-related adaptor) [6]. The LKB1-
MO25-STRAD complex acts as a kinase for AMPK (AMP
activated protein kinase) and AMPK related kinases, such as
MARK3 (MAP/microtubule affinity regulating kinase), thus
increasing their activity by a factor of 100−150 [7]. MARK3
plays a role in cell migration through regulating cell polarity.
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AMPK influences cell proliferation via mTOR signaling and
is dephosphorylated if the AMP:ATP ratio is low, i.e. under
medium to high glucose conditions. Active AMPK acts as
a kinase for TSC2 (tuberous sclerosis complex 2) phos-
phorylation, which in turn inhibits Rheb (Ras homologue
enriched in brain). Active Rheb has the ability to activate
mTORC1 (mammalian target of rapamycin complex 1) [8].
Additionally, AMPK phosphorylates raptor and in doing so
inhibits the activtity of mTORC1 [9]. mTORC1 can regulate
the cell cycle, and thus proliferation, through the initiation of
protein synthesis for cell growth and division [10]. Therefore,
miR-451 establishes a direct link between a cell’s glucose
level and its decision for migration or proliferation.

Computational modeling of tumor growth aims at gaining
a better understanding of the underlying biological processes
and at aiding the improvement and development of therapies.
Depending on the processes under investigation models on
the macroscopic, the cellular or molecular scale as well as
covering multiple scales can be employed [11], [12], [13].

Here, a molecular interaction network (mathematically ex-
pressed by means of ordinary differential equations (ODEs))
is developed that represents the processes described by
Godlewski et al. [4] on the subcellular scale. Based on
the multiscale modeling approach introduced by Athale et
al. [14] the molecular level is coupled with the cellular
one by equipping each individual cell (represented as the
agents of an agent-based model (ABM)) with the molecular
interaction network. This allows us to study in silico the
spatio-temporal dynamics of the early GB growth phase in
a comparable manner to in vitro experiments. In particular
it is possible to compare the tumor development under
different glucose conditions. Our first results show, that our
computational model is able to reproduce the results obtained
from biological experiments.

II. METHODS

Our model covers aspects on the subcellular scale (energy
dependent decision for a migratory or proliferating pheno-
type) as well as on the cellular level, such as chemotaxis.
This is done by combining an ABM, where each agent
represents a biological cell, with a molecular interaction
network that is given by 17 ODEs for each individual agent.

A. Subcellular scale: Molecular Interaction Network

Within each individual cell the interaction of the different
relevant molecules (RNAs, proteins, glucose) is modeled
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Fig. 1. The molecular interaction network with that each cell is equipped.

by mass-balance reactions and Michaelis-Menten equations
for the enzyme kinetics. In total 17 molecular species are
involved whose concentrations constitute the 17 variables of
the system which are governed by 17 ODEs. The interaction
network is shown in Fig. 1 and consists of the following
elements:

MiR-451 (x1) inhibits translation of MO25 mRNA (x2)
into protein (x4) by binding and each of the components
can be degraded. MO25 binds to LKB1 and STRAD (x5) to
form an active complex (x6):

dx1

dt
=k1 · x17 − k2 · x1 · x2 − k3 · x1,

dx2

dt
=k4 − k2 · x1 · x2 − k6 · x2,

dx3

dt
=k2 · x1 · x2 − k5 · x3,

dx4

dt
=k7 · x2 − k8 · x4 − k9 · x4 · x5 + k10 · x6,

dx5

dt
=− k9 · x4 · x5 + k10 · x6,

dx6

dt
=k9 · x4 · x5 − k10 · x6.

LKB1 phosphorylates MARK3 (x7) and AMPK (x9):

dx7

dt
=k11 · x8 −

kc112 · x5 · x7

km1
12 + x7

+
kc212 · x6 · x7

km2
12 + x7

,

dx8

dt
=− k11 · x8 +

kc112 · x5 · x7

km1
12 + x7

+
kc212 · x6 · x7

km2
12 + x7

,

dx9

dt
=− kc113 · x5 · x9

km1
13 + x9

+
kc213 · x6 · x9

km2
13 + x9

+
ki14 · k14 · x10

ki14 + S1
,

dx10

dt
=
kc113 · x5 · x9

km1
13 + x9

+
kc213 · x6 · x9

km2
13 + x9

− ki14 · k14 · x10

ki14 + S1
.

AMPK regulates mTORC1 activity (x16) on the one hand
immediately through raptor binding and on the other hand
via TSC2 (x11) phosphorylation and Rheb (x13) activation:

dx11

dt
=− kc115 · x9 · x11

km1
15 + x11

− kc215 · x10 · x11

km2
15 + x11

+ k16 · x12,

dx12

dt
=
kc115 · x9 · x11

km1
15 + x11

+
kc215 · x10 · x11

km2
15 + x11

− k16 · x12,

dx13

dt
=− ki17 · k17 · x13

ki17 + x12
+ k18 · x14,

dx14

dt
=
ki17 · k17 · x13

ki17 + x12
− k18 · x14,

dx15

dt
=
kc119 · x9 · x16

km1
19 + x16

+
kc219 · x10 · x16

km2
19 + x16

− kc20 · x14 · x15

km20 + x15
,

dx16

dt
=− kc119 · x9 · x16

km1
19 + x16

− kc219 · x10 · x16

km2
19 + x16

+
kc20 · x14 · x15

km20 + x15
.

Glucose is constantly consumed by the cells:

dx17

dt
=− rn.

The reaction parameters and initial variable values were
taken from the literature [4], [15], [16] or are estimates
if no data were available. They are summarized in table I
(estimates are marked by a *) and table II.

TABLE I
MOLECULAR SPECIES AND RESPECTIVE INITIAL CONDITIONS.

Species Name Initial value Unit
x1 miR451 3.8728× 102 pmol l−1

x2 MO25 mRNA 3 pmol l−1

x3 MO25 miRNA bound * 0 pmol l−1

x4 MO25 5× 104 pmol l−1

x5 LKB1-STRAD * 5× 104 pmol l−1

x6 LKB1-STRAD-MO25 * 5× 104 pmol l−1

x7 MARK3 1.2897× 103 pmol l−1

x8 MARK3 phosphorylated 0 pmol l−1

x9 AMPK 6.709× 103 pmol l−1

x10 AMPK phosphorylated 0 pmol l−1

x11 TSC2 4.4333× 101 pmol l−1

x12 TSC2 phosphorylated 0 pmol l−1

x13 Rheb 1.512 66× 104 pmol l−1

x14 Rheb active 0 pmol l−1

x15 mTOR C1 4.4087× 102 pmol l−1

x16 mTOR C1 active 0 pmol l−1

x17 Glucose 0.3 to 4.5 g l−1
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TABLE II
PARAMETERS FOR REACTIONS.

Parameter Value Unit
k1 6× 10−7 s−1

k2 3× 10−2 s−1

k3 3× 101 pmol l−1 s−1

k4 8.7498 s−1

k5 3.6× 102 s−1

k6 1.0467× 10−2 s−1

k7 1.4065× 101 s−1

k8 6.4167× 10−3 pmol l−1 s−1

k9 6× 10−2 s−1

k10 3.6× 102 s−1

k11 6× 10−1 s−1

km1
12 5× 103 pmol l−1

kc112 1× 10−1 pmol−1 l−1 s−1

km2
12 5× 103 pmol l−1

kc212 1 pmol−1 l−1 s−1

km1
13 5× 102 pmol l−1

kc113 1.8× 101 pmol−1 l−1 s−1

km2
13 5× 102 pmol l−1

kc213 1.8× 102 pmol−1 l−1 s−1

ki14 6× 10−1 pmol l−1

k14 6× 102 pmol−1 l−1 s−1

km1
15 1× 102 pmol l−1

kc115 6× 10−2 pmol−1 l−1 s−1

km2
15 1× 102 pmol l−1

kc215 6 pmol−1 l−1 s−1

k16 3.6× 102 s−1

ki17 5 pmol l−1

k17 3.6× 102 pmol−1 l−1 s−1

k18 3.6× 102 s−1

km1
19 1× 102 pmol l−1

kc119 3.6× 10−1 pmol−1 l−1 s−1

km2
19 1× 102 pmol l−1

kc219 3.6× 101 pmol−1 l−1 s−1

km20 1.5104× 103 pmol l−1

kc20 1.08× 102 pmol−1 l−1 s−1

rn 1.17× 10−2 mmol l−1 s−1

B. Cellular scale: Chemotaxis

A regular 200× 200 grid representing an area of 3mm×
3mm can contain at each grid point one biological cell of
the size 15 µm× 15 µm. Initially a constant glucose concen-
tration is assumed on the whole grid. Over time, glucose is
consumed by the cells (dx17

dt = −rn) and diffuses through
the grid as mathematically described by the following partial
differential equation:

∂x17

∂t
= D ∇2x17, (1)

where D is the diffusion coefficient for glucose.
If a cell is selected to migrate, its movement will follow

the gradient of a chemotactic agent. Since glucose is already
part of the model and acts as an attractor for tumor cells [17],
the new cell position is chosen as the empty neighbor with
the highest glucose concentration.Also, if a cell proliferates,
its daughter cell is positioned according to the same rule.

C. Coupling the Molecular and Cellular Scale

To combine the above two described models an ABM
approach is applied. This enables the assessment of the
effects of the molecular scale on the tumor development at

the cellular level. The individual cells form the agents. Their
action rules are given by 1.) the decision for a phenotype
according to the molecular interaction network and 2.) the
movement according to the chemotaxis condition.

In each time step the cells are processed in a random order
to avoid any unnatural pattern formation. For each cell first
the molecular interaction network will be evaluated. Then,
linearly dependent on the concentrations of phosphorylated
MARK3 (x8) and active mTORC1 (x16) a probability for
the cell’s phenotype (proliferating, migrating or quiescent)
is determined. Finally, depending on the phenotype, the
daughter cell is placed in the cell’s neighborhood, the cell
is moved to a more attractive position or the cell is kept
unchanged as a quiescent cell. After all cells are updated the
glucose levels are refreshed by evaluating (1).

III. RESULTS

Godlewski et al. [4] showed the results of two in vitro ex-
periments of glioblastoma spheroid migration under different
glucose conditions. They compare the tumor development
under a glucose level of 2.25 g l−1 to the development if the
glucose level is low (0.3 g l−1). They observe a significantly
increased migration under low glucose conditions.

To evaluate our model we emulate the conditions of the
migration assay. Initially, we place 797 tumor cells in the
center of the grid (representing a circular area with a radius
of 240 µm = 16 cells). The simulation is run according to the
description in section II with one time step corresponding to
one hour. The system of ODEs is solved numerically by a
four-stage Runge-Kutta scheme and the PDE is solved with
a finite-difference method.

To compare the results of our model to the in vitro exper-
iments we simulated the development of the in silico tumor
with an initial condition of 0.3 g l−1 glucose and 2.25 g l−1

glucose. Fig. 2(a) shows the results of these experiments
after a simulated period of 6 hours. The migratory area of
the 0.3 g l−1 glucose simulation is indicated by the green
dashed half circle and the blue solid half circle displays
the migration zone of the 2.25 g l−1 glucose simulation.
Proliferating cells are displayed in light gray, migrating cells
are shown as dark gray and quiescent cells are color coded
as black.

Additionally, Fig. 2(b) shows the spatio-temporal develop-
ment of the tumor growth for the same two glucose settings
(upper row: 0.3 g l−1, lower row: 2.25 g l−1). We stopped the
simulations as soon as a tumor cell reached the boundary.

IV. DISCUSSION AND CONCLUSIONS

The in vitro experiment in Godlewski et al. [4] demon-
strates that under low glucose conditions a tumor tends
to migrate faster and further than under medium glucose
conditions. The same observation can be made in the in silico
experiments with our newly developed computational model.
The comparison of the different glucose conditions in Fig.
2(a) shows that the migratory area of the tumor cells has a
greater extend if the tumor is grown on a 0.3 g l−1 glucose
medium as compared to a 2.25 g l−1 glucose medium.
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(a) (b)

Fig. 2. (a) Comparison of results of in silico experiments under different initial glucose conditions (left: 0.3 g l−1, right: 2.25 g l−1) at T = 6 h. (b) The
spatio-temporal development of the in silico tumor growth under different glucose conditions. For the in silico experiments in (a) and (b) the following
color coding holds: black: quiescent cells; dark gray: migrating cells; light gray: proliferating cells.

Since a sufficient glucose supply is essential for the GB
cell’s proliferation potential, proliferation is significantly
reduced under low glucose conditions. Due to nutrient con-
sumption by the tumor cells, the glucose level is lower
in the area where the tumor bulk is located. Thus, if the
glucose supply is insufficient, tumor cells seek for a more
advantageous environment by migrating away from the tumor
bulk. On the other hand, if a tumor cell has enough glucose
at its disposal, it has the ability to initiate proliferation such
that there is no need for migration.

This behavior can also be observed in Fig. 2(b). Here
the spatial tumor development over time is depicted for
two different glucose levels until the first cell reaches the
boundary. A medium glucose level (2.25 g l−1, lower row
in Fig. 2(b)) results in an evenly growing tumor that is
very densely packed (29 571 cells in the last time step, T
= 623 h) and exhibits a quiescent core surrounded by a
rim of migrating and proliferating cells. In an environment
containing less glucose (0.3 g l−1, upper row in Fig. 2(b))
the tumor has a more diffusive character and dispreads faster
(containing 5693 cells in the last time step, T = 158 h).

Overall, the results demonstrate that our computational
model is capable of reproducing GB growth behavior as it is
expected from the biological context. In particular under low
glucose conditions, the simulated tumor exhibits a behavior
that is essential for the aggressive character of GB tumors:
Individual cells separate from the tumor bulk and invade the
surrounding (healthy) micro environment.

This behavior is also seen in the results of Athale et al.
[14]. However, in their work no specific in vitro experiment
is emulated, but rather a general in vivo setting.

Our future research is directed towards a sensitivity anal-
ysis of the involved parameters. This analysis will allow us
to identify parameters that have a crucial influence on the
overall system behavior. Thus, these parameters will have to
be estimated even more precisely and can be used to indicate
potential new therapy targets.
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