
Fourier-Based Shape Feature Extraction Technique for Computer-Aided

B-Mode Ultrasound Diagnosis of Breast Tumor

Jong-Ha Lee1, Yeong Kyeong Seong1, Chu-Ho Chang1, Jinman Park1,

Moonho Park1, Kyoung-Gu Woo1, and Eun Young Ko2

Abstract— Early detection of breast tumor is critical in
determining the best possible treatment approach. Due to its
superiority compared with mammography in its possibility to
detect lesions in dense breast tissue, ultrasound imaging has
become an important modality in breast tumor detection and
classification. This paper discusses the novel Fourier-based
shape feature extraction techniques that provide enhanced
classification accuracy for breast tumor in the computer-aided
B-mode ultrasound diagnosis system. To demonstrate the effec-
tiveness of the proposed method, experiments were performed
using 4,107 ultrasound images with 2,508 malignancy cases.
Experimental results show that the breast tumor classification
accuracy of the proposed technique was 15.8%, 5.43%, 17.32%,
and 13.86% higher than the previous shape features such as
number of protuberances, number of depressions, lobulation
index, and dissimilarity, respectively.

I. INTRODUCTION

According to the American Cancer Society, more than

178,000 women and 2,000 men are found to be afflicted

with breast cancer every year; international statistics report

an estimated 1,152,161 new cases annually [1]. This form

of the disease is the leading killer of females between 40

and 55 years of age, and is statistically the second leading

cause of death overall in women. Clearly, early detection and

diagnosis is the key to surviving this fatal disease. The sooner

the tumors are detected and diagnosed, the better treatment

can be applied.

Screening through mammography is one of the most

often used diagnostic tools. Mammography, however, is not

effective for dense breasts, with high false negative rates

[2]. In recent years, ultrasound imaging has become an

important tool for early breast tumor detection, proving

complementary diagnostic information for mammography,

especially in patients with dense breast tissue [3]. To evaluate

breast tumors via ultrasound, radiologists consider several

features in the image, such as lesion shape, orientation,

echo pattern, and posterior acoustic enhancement [4], [5].

Interpretation of ultrasound images, however, is subjective

and variability is very high due to its low image resolution

and the different experiences of radiologists who analyze the

tumor features. Variations in human perception of the image,
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different features used in the interpretation of the image,

and a lack of the quantitative measures of the features used

for image analysis, result in diagnostic variability between

radiologists. Consequently, final confirmation is achieved

through other modalities, such as CT, MRI, or biopsy [6].

In order to remove operator dependency and increase

diagnostic accuracy, the computer-aided diagnosis (CAD)

system provides a valuable method for breast tumor detection

and classification. To describe the target in the CAD system,

sonographic findings should be quantified into computerized

values. The effectiveness of echo and texture features have

already been shown to improve diagnosis of breast tumor [7].

However, the echo and texture features are sensitive to image

noise and modality setting. Mass shape is one of the most

significant image features [8]. The shapes of malignant breast

tumors are more complex than benign lesions due to their

infiltration characteristics into surrounding tissues. Malignant

lesions are usually irregular, microlobulated, or spiculated

whereas benign lesions are oval, round, or macrolobulated.

Thus, if the irregularity of the sonographic finding is quan-

tified correctly, the accuracy of the CAD scheme can be

improved significantly. Several boundary-based methods an-

alyzed in the spatial domain have been used to describe

mass shape, such as roundness, concaveness, and convexness

[8], [9]. However, throughout these methods, irregularity

of mass shape is only expressed locally. Global important

information to represent shape irregularity are not considered

in boundary-based methods. For instance, if irregularity

characteristics only exist locally, and most other areas show

non-irregular characteristics, boundary-based methods will

confirm that the shape is irregular, not regular. Thus, it is

necessary to develop a new feature extraction technique to

express shape irregularity globally.

In this paper, we propose a Fourier-based shape feature

extraction approach for ultrasound images that are able to

model subtle shape differences between benignancies and

malignancies in the global aspect of view, thus improving

CAD classification accuracy. The proposed technique is de-

veloped by applying Fourier transform on a shape signature

which is derived by two different functions. The first function

we utilized is the centroid distance function (CDF). The CDF

is expressed by the distance of the mass boundary points

from the centroid of a mass shape. The second function we

developed is the centroid shape context function (CSCF). The

CSCF captures the distribution of the mass boundary points

by the log-polar diagram. Finally, the results from CDF and

CSCF are combined together to improve classification perfor-
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mance. The proposed method takes advantage of considering

mass shape irregularity globally, thus even if irregularity of

the mass exists locally, shape irregularity can be expressed

correctly. To verify the performance of the proposed features

for breast tumor classification, experiments were done using

4,107 breast ultrasound images of in vivo human subjects

containing 2,508 malignant cases.

The reminder of this paper is organized as follows. Section

2 introduces ultrasound images acquisition and data set

used in this research. Section 3 presents proposed shape

features allowing improved classification accuracy for breast

tumors. The support vector machine as a classifier for breast

tumors as benign or malignant is also discussed. Section

4 demonstrates performance of the proposed approach in

comparison with that of other shape feature extraction ap-

proaches. Finally, Section 5 concludes the paper.

II. ULTRASOUND IMAGE ACQUISITION AND DATA

COLLECTION

Ultrasound images of 4,107 breast tumors were collected

from the Samsung Medical Center, Seoul, South Korea,

between 2006 and 2010. The mean age of benign cases was

45 years, and the age range was from 11 to 81. The mean

age of malignant cases was 49 years, and the age range

was from 24 to 86. The test sets consisted of 1,599 benign

and 2,508 malignant tumors. All images were taken using a

Philips ATL iU22 ultrasound machine under the approval of

the institutional review board of Samsung Medical Center.

The scanner was equipped with a 5 to 12 MHz, 6 cm linear

probe. The B-mode image size was 1024 × 768 pixels, with

a spatial resolution of 0.23 mm/pixel. For each image, tumor

boundary was manually outlined by a radiologist. Fig. 1
shows an example of the manual segmentation. Fig. 1(a)

shows an example of an original ultrasound image with a

malignant tumor. Fig. 1(b) shows the manual segmentation

result for the tumor.

(a) (b)

Fig. 1: The example of detection and segmentation of a

breast tumor. (a) The original image with a benign tumor,

(b) Manual segmentation of the tumor (red line).

III. FOURIER-BASED SHAPE FEATURE EXTRACTION

In the previous section, we described ultrasound image

acquisition and manual segmentation of breast tumor. In

this section, we describe the proposed Fourier-based tech-

nique to extract shape feature from the manually segmented

tumor area. Initially, control points are subsampled along

the boundary of the segmented tumor area, then the shape

features are extracted from the Fourier descriptor (FD) based

on centroid distance function (CDF) and centroid shape

context function (CSCF). Using the staked vector approach,

several feature vectors are combined into a single vector

of features. Finally, a support vector machine (SVM) with

Radial Basis Function (RBF) classifier was used for classi-

fication of the given image as benign or malignant. We now

describe the feature extraction and classification steps used

in the proposed algorithm in more detail.

A. Centroid Distance Function

Centroid distance function (CDF) is a one-dimensional

(1-D) shape signature calculated from shape boundary co-

ordinates. This shape signature captures the perceptual

characteristic of the shape. The centroid distance func-

tion r(n) is expressed by the distance of the contour

points from the centroid (gx, gy) of a shape as r(n) =
[(xn − gx)

2 + (yn − gy)
2]1/2, where xn and yn are co-

ordinates of shape boundary. (gx, gy) are calculated by

gx = 1

6A

∑N−1

i=0
(xi + xi+1)(xiyi+1 − xi+1yi) and gy =

1

6A

∑N−1

i=0
(yi + yi+1)(xiyi+1 − xi+1yi), where A is the

segmented shape area in the image. The centroid distance

representation is invariant to translation because of the sub-

traction of centroid from boundary coordinates. Due to this

property, classification performance will not be affected by

the position of tumors in the ultrasound image.

B. Centroid Shape Context Function

Consider the vector set originating from a initial point to

all other contour points on a shape. Then the vectors show

the configuration of the entire shape relative to the reference

point. Centroid shape context function (CSCF) captures the

entire shape relative to the centroid of the mass using the log-

polar diagram and expresses it through the shape histogram

[10], [11]. The bins of log-polar diagram are uniform in

log-polar space, which makes the diagram more sensitive to

positions of adjacent points than to those of points far apart.

An example shown in Fig. 2(a) is the log-polar diagram that

has 5 bins for polar direction (r) and 12 bins for the angular

direction (θ). The histogram of mass centroid is formed by

putting the center of the diagram on the centroid of the

mass. Then each bin of the histogram contains a count of

all other sample points on the shape falling into that bin.

The number of points in each bin is then expressed by the

two-dimensional (2-D) histogram. 2-D histogram calculated

at centroid can be converted into 1-D histogram by ordering

with regard to decreasing polar distance. An example of 2-

D histogram and converted 1-D histogram is shown in Fig.

2(b) and (c). The example of proposed CDF and CSCF shape

signatures extracted from the segmented boundary of Fig.

1(b) are shown in Fig. 3.

C. Fourier Descriptor

For analysis and synthesis of the plane-closed curves, the

Fourier descriptor (FD) is used [12]. FD is obtained by

applying Fourier transform on a shape signature derived from

shape boundary coordinates in Section III-A and III-B.

6552



(a) (b)

(c)

Fig. 2: The centroid shape context and its histogram. (a) The

diagram of the log-polar bins, (b) The 2-D histogram for the

boundary points, (c) The converted 1-D histogram.
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Fig. 3: The shape signature from (a) centroid distance

function (CDF), (b) centroid shape context function (CSCF).

The normalized transformed Fourier coefficients are called
the Fourier descriptors. The discrete Fourier transform of
signature function is given by

an =
1

N

N−1
∑

t=0

r(t) exp
(

−j2πnt

N

)

, n = 0, 1, . . . , N − 1 (1)

Since the CDF and CSCF are invariant to translation

and rotation, the Fourier coefficients have to be further

to make them scale invariant and start point independent

shape descriptors. The relation between Fourier coefficients

of original shape and transformed through scaling and change

of start point is given by

an = exp(jnϕ) · s · aon (2)

where ϕ is the angles incurred by the start point change and

and s is the scale factor. Then normalized Fourier coefficients

bn of the transformed shape is obtained by

bn =
an

a1
=

aon
ao1

exp[j(n− 1)ϕ] = bon exp[j(n− 1)ϕ] (3)

where bon is the normalized Fourier coefficients of the original

shape. From Eq. (3), it is clear that, if we ignore phase of the

coefficients, then magnitudes |bn| and |bon| are the same. In

other words, |bn| is invariant to translation, rotation, scaling

and start point change. The values of |bn| are the shape

features that we used for the breast tumor classification.

For the improvement in the classification of ultrasound

images, we have combined both Fourier descriptors from

CDF and CSCF through staked vector approach (SVA)

technique, where both Fourier descriptors are concatenated

to form a long feature vector.

D. Support Vector Machine (SVM) Classifier

Support vector machine (SVM) is widely used method

for classification and regression tasks [13]. In the two class

problem like the one in this paper, the aim is to find an

optimal separating hyperplane. For a two-class problem with

training samples {xi, yi} , i = 1, 2, . . . , N in d−dimensional

feature space, xi ∈ Rd, with associated targets, yi ∈ {−1, 1},

then the discriminate function of the separating hyperplane

for linearly separable classes is given as

f(x) = w · Φ(x) + b (4)

where w ∈ Rd is the vector normal to the hyperplane and

b ∈ R is the bias. SVM fit a hyperplane to the training

samples of two classes in the feature space by minimizing

the cost function consisted of two criteria, namely margin

maximization and error minimization. The data points closest

to hyperplane are called support vectors. In this paper,

classification is done through a SVM classifier with a Radial

Basis Function (RBF).

In summary, the proposed Fourier-based shape feature

extraction scheme can be described as follows.

Step 1. Boundary extraction from the input ultrasound

image.

Step 2. Find Fourier descriptors from centroid distance

function.

Step 3. Find Fourier descriptors from centroid shape con-

text function.

Step 4. Staking of Fourier features extracted in step 2 and

3, to make a single feature vector.

Step 5. SVM classifier is used to classify the input ultra-

sound image by using staked feature vector found

in step 4.

IV. EXPERIMENTAL RESULTS

To test the performance of the computed shape features,

classification experiments were performed. In total, 94 fea-

tures were extracted from each ROI of the 4,107 ultrasound

images: 31 CDF features and 63 CSCF features. Feature

selection was then done by searching the space of feature

subsets, and evaluating each one. In this experiment, a 43

reduced feature dataset was obtained from the full feature

dataset using a correlation based feature selection evaluator

and bestfirst search method [13]. Every experiment was

performed using a 2.93 GHz Intel Xeon CPU workstation

with 3GB of RAM and the Windows 7 operating system.

To calculate classification accuracy, the k-fold cross val-

idation method was used and set k as 10. The pathological

results were used as the ground truth, and the performance

indices were evaluated by five performance indices, in-

cluding classification accuracy (TP+TN)/(TP+TN+FP+FN),

sensitivity (TP/[TP+FN]), specificity (TN/[TN+FP]), positive

predictive value (TP/[TP+FP]), and negative predictive value
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(TN/[TN+FN]), where TP is the number of true-positive

findings correctly classified as positive (i.e., a malignant

tumor is considered as malignant); TN, true-negative; FP,

false-positive; and FN, false-negative [14].

Fig. 4 represents the performance of the proposed features

compared with other shape feature sets: number of protuber-

ances (F1) [8], number of depressions (F2) [8], lobulation

index (F3) [8], and dissimilarity (F4) [9]. From the result,

we can see that the performance of the classifier using

the proposed features was much higher than that of other

previous feature sets. In terms of accuracy, the proposed

features increased accuracy to 15.8% for F1, 5.43% for F2,

17.32% for F3, and 13.86% for F4. In terms of sensitivity,

the proposed features increased sensitivity to 5.96% for F1,

5.6% for F2, 37.29% for F3, and 7.69% for F4. Thus,

it is demonstrated that the proposed features can classify

malignant breast tumors with respect to the five objective

indices more accurately.
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Fig. 4: Classification performance of breast tumor using five

objective indices.

The relationship between sensitivity and specificity can

be illustrated by the receiver operating characteristic (ROC)

curve, which is a graphical plot of the TP rate, against the

FP rate [14]. A ROC curve facilitates advanced analysis of

the classification accuracy of a diagnostic method. The shape

of the ROC curve can be determined by the area under the

curve (AUC). Thus, the AUC can be used as a measure of test

accuracy. An AUC of 1 represents a perfect test and an AUC

of 0.5 represents a worthless test. An experimental result that

gives a larger AUC indicates a better method than one with a

smaller area. Fig. 5 shows the classification performance of

the proposed features compared to the other features using

AUC. As shown in the result, the AUC of the proposed

features are 15.75%, 12.93%, 5.22%, and 4.04% higher than

the other features such as F1, F2, F3, and F4. Therefore, the

proposed technique has the greatest discrimination capacity.

V. CONCLUSIONS

In this paper, we propose a novel Fourier-based shape

feature extraction technique which can provide a high ac-

curacy rate of mass classification in the computer-aided B-

mode ultrasound diagnosis of breast tumor. We also tried
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Fig. 5: Comparison of the AUC of the classification results

from different feature sets.

different kinds of features and compare the performance of

each feature in classifying tumors. To demonstrate the per-

formance of the proposed features, 4,107 ultrasound images

containing 2,508 malignant cases was used. The experiments

demonstrate that the proposed features can represent the

shape irregularity of tumors in ultrasound images, result

in the better classification performance compared to other

boundary-based features in the spatial domain.
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