
  

 
 

Abstract—We propose the use of Scale Invariant Feature 
Transform (SIFT) as a method able to extract stable landmarks 
from 4D images and to quantify internal motion. We present a 
preliminary validation of the SIFT method relying on expert 
user identification of landmarks and then apply it to 4D lung 
CT and liver MRI data. Results demonstrate SIFT capabilities 
as an operator-independent feature tracking method. 

I. INTRODUCTION 

Four-dimensional imaging techniques such as 4D CT and 
4D MRI can depict the breathing motion of internal organs. 
The application of automatic motion tracking techniques to 
derive a quantitative description of breathing-induced motion 
of specific anatomo-pathological structures is still a 
challenge. Although extensively applied, image-based 
deformable registration methods across 4D CT/MRI motion 
phases suffer from the lack of validation data [1,2]. Potential 
applications of automatic tracking in 4D imaging include the 
optimization of external beam radiotherapy by supporting 
time-resolved treatment delivery methods and the 
customization of target volume margins [3,4]. Preliminary 
studies for automatic landmark extraction, such as the use of 
corner detectors by Kitchen and Rosenfeld [5], Forstner [6] 
and Harris [7], have examined an image at a single scale, thus 
limiting the accuracy and stability of feature detection. 
Furthermore, the invariance properties of feature extraction 
methods are crucial to detect points in temporal image series 
of the same patient. Scale Invariant Features Transform 
(SIFT) is a method that provides extraction and matching of 
stable and prominent points at different scales between two 
images. Lowe [8,9] initially designed it for 2D images and 
Cheung and Hamarneh extended it to nD images [10].  

In this work, we investigate SIFT as a feature tracking 
method for quantitative motion analysis in 4D image 
datasets. As a preliminary study, we compared SIFT matches 
with manual landmarks in a lung 4D CT dataset. We then 
applied SIFT to volume pairs of 4D lung CT and 4D liver 
MRI data, to demonstrate its use for internal motion tracking. 

II. MATERIALS AND METHOD 

A. Scale Invariant Feature Transform 

Scale-space extremes detection 
As described by [9,11], we pre-smoothed the input image ݔ)ܫ, ,ݕ  with a Gaussian kernel featuring a standard (ݖ

deviation ߪ௦, to prevent aliasing.  Then a scale space was 
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built by convolving the pre-smoothed ݔ)ܫ, ,ݕ  with a (ݖ
Gaussian kernel ܩ൫ݔ, ,ݕ ,ݖ  ௩൯. The output was a stack (orߪ
octave) of blurred Gaussian Images ݔ)ܮ, ,ݕ ,ݖ  separated (ߪ݇
by a constant multiplicative factor ݇ = 2ଵ/௦, where ݏ is the 
number of intervals. The value of the Gaussian kernel ߪ௩ 
was updated by moving from one scale to the next one, based 
on the sum of sequential independent filters variances. Once 
a complete octave was processed, the Gaussian Image that 
exhibited ߪ equal to double of the initial value was 
subsampled by a factor of 2 and used as a source for the next 
octave. Finally, Difference of Gaussian Images (ݏܩܦ) were 
obtained by subtracting each Gaussian Image from the 
adjacent image in each octave: ݔ)ܩܦ, ,ݕ ,ݖ ݇ߪ) = = ቀݔ)ܩ, ,ݕ ,ݖ ݇ାଵߪ) − ,ݔ)ܩ ,ݕ ,ݖ ݇ߪ)ቁ ∗ ,ݔ)ܫ ,ݕ = (ݖ ,ݔ)ܮ ,ݕ ,ݖ ݇ାଵߪ) − ,ݔ)ܮ ,ݕ ,ݖ ݇ߪ) 
Candidate feature points (i.e. landmarks) were detected as 
local extremes, by comparing each voxel to its neighbors in 
3x3x3 regions in the current and adjacent ݏܩܦ. For a 3D 
image, there were a total of (3ଷାଵ − 1) neighbors to be 
checked (i.e. the cube of voxels excluding the central one in 
the current [9,10] (ܩܦ. As the scale above and below the 
current one were needed to determinate extremes, ݏ + ݏ .i.e ) ݏܩܦ 2 + 3 Gaussian Images) were required for the 
whole procedure.  

Feature point localization 
We classified a point as stable, when found to be well 

contrasted and not located on plate-like or tubular structures 
in the ܩܦ. The first requirement was satisfied if the 
candidate point xො had a value of |ܩܦ(ݔො)|	greater than a 
threshold Tୡ. Among well contrasted features, we selected 
those in which principal curvatures had the same (i) sign and 
(ii) magnitude order, according to the following formulas 
[11]:  

(i) tr(H) det(H) > 0		and ∑detଶ (H) > 0 

(ii) ୲୰(ୌ)యୢୣ୲	(ୌ) < (ଶ୲ౣ౮ାଵ)య(୲ౣ౮)మ  

where H is the Hessian matrix of the image,	tr(H)	its trace, det(H) the determinant, ∑detଶ (H) the sum of principal 
second-order minors of H and t୫ୟ୶ the ratio between the 
largest magnitude eigenvalue of H and the smaller one.  

Orientation assignment and feature point descriptor 
To properly describe each feature, a local orientation was 

assigned to each voxel, by computing gradient magnitude 
and orientations for each first Gaussian Image ܮ൫ݔ, ,ݕ ,ݖ ݎ ௩൯ in each octave. We consideredߪ × ݎ ×  ݎ
voxel regions around the feature points as their local 
domain. Each region was weighted by a circular Gaussian 
window with sigma ߪ௪ equal to one half of the region width, 
to avoid sudden descriptor changes and to give less emphasis 
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to gradients far from the feature point. An orientation 
histogram with ܾ × ܾ bins was then built in ݉ ×݉ ×݉ sub-
regions of the local feature domain. The descriptor was 
formed from a vector containing the values of all orientation 
histogram entries, as described in [9,11]. Selected values of ݎ, ݉ and ܾ are defined in section C. 

Feature matching 
We defined the Euclidean distance ܵ,′ as 

ܵ,′ = ඩ ఈ(ܫ∇)| − ఈ|ଶ(′ܫ∇)
ఈୀଵ 				 

where (∇ܫ)ఈ and ൫∇ܫ′൯ఈ are the orientation histograms of 
feature points ݊ on one image and of a potential association ݊’ on another image and	ߙ is the bin index. Amongst all the 
possible ܵ,′, the two closest points ݊ଵ′  and ݊ଶ′  were 
identified. If the ratio ܵ,భ′ ܵ,మ′ൗ  was below a matching 
threshold ܶ, the point having the lowest ܵ,′ value was 
chosen as corresponding to  ݊. Otherwise, no association 
was identified for the feature point. To further increase the 
accuracy of feature point association, the bi-directionality of 
each landmark association was verified. 

B. Testing dataset 
We tested our approach on a 4D CT dataset (www.dir-

lab.com) of the entire thorax acquired while an external 
respiratory phase signal was recorded. The images acquired 
were sorted into ten equally sampled phases of the 
respiratory cycle. The reconstructed non isotropic volumes 
were 512×512×128 voxels of 0.97×0.97×2.5 mm. 
Corresponding maximum inhale (L5) and exhale phase (L0) 
landmarks were manually individuated by an expert [12,13]. 
We also applied the method to a 4D MRI dataset of the liver 
(www.vision.ee.ethz.ch/4dmri/). Fourteen 3D anisotropic 
volumes were reconstructed from dynamic sagittal 2D 
images acquired during free breathing, by a multi-
dimensional gating measure relying on a dedicated navigator 
slice [14]. Each volume consisted of 256×256×25 voxels of 
1.37×1.37×4 mm. 

C. Experiments 

Parameters definition 
Parameters were derived from an analysis of current 

literature on the use of SIFT in biomedical imaging. After an 
anti-aliasing filtering with ߪ௦ = 0.5mm [8], the Gaussian 
blur with ߪ௩ = 2mm and ݏ = 3 [10,11] was performed 
and 5 ݏܩܦ per 3 octaves were generated. The feature 
candidates were refined using ܶ = 0.03 [9,11] and ݐ௫ =20 [11], assuming image values in the range [0,1]. For the 
feature point descriptor, we found ݎ = 24 (i.e. ߪ௪ = 12), ݉ = 6 and ܾ = 8 to be more robust against artifacts that 
affect points detection. Finally ܶ was set to 90% as 
suggested in [11].  

Match validation 
4D CT SIFT matches were evaluated in terms of error, 

computed as 3D residual distance between SIFT feature 
location at maximum exhale (0) and maximum inhale (5) 
phases. This error was compared with the one produced by 

manual landmarks identified on the same phases (L0 and 
L5). Mann-Whitney test [15] was performed between the 
two error distributions (SIFT 0-5 and L0-L5), in order to test 
the reliability of the SIFT method for feature tracking. 

Feature tracking 
We applied SIFT to volume pairs of 4D scans according 

to two approaches: 
 keeping maximum exhale phase (0) as reference; 
 moving consecutively along the breathing cycle, i.e. 

selecting the previous phase as reference for feature 
tracking in the current phase. 

For each strategy, we computed the number and the residual 
distance of the matches in each volume pair. The number of 
common matches between all phases was computed, 
preserving also the matches which were present in a 
neighborhood of the maximum inhale phase (i.e. 5 and 6 for 
4D CT) and with no more than two misses in the previous 
and following phases. Final trajectories were obtained by 
cubic interpolation both of features tracked on all phases and   
those affected by less than five misses. For 4D CT, image 
pre-processing included lung masking, in order to avoid SIFT 
bony structure identification in favor of vessels and 
bifurcations. Given the higher number of phases in the 4D 
MRI scan, the neighborhood of the maximum inhale phase 
(6) was enlarged to phases 5, 6 and 7. No further masking 
was needed for this dataset.  

III. RESULTS AND DISCUSSIONS 

A.  Match validation 
Table I reports the number of matches identified at 

maximum exhale and maximum inhale phases by an operator 
(L0-L5) and SIFT (SIFT 0-5) in 4D CT. We also report 
median and variability (computed as difference between 75th 
and 25th percentiles) of the two error distributions. Despite 
the slightly higher median of our method, the Mann-Whitney 
test [15] confirms that the two populations were not 
significantly different (p-value=0.71). This results in SIFT 
preliminary validation and allows its application in feature 
tracking and subsequent internal trajectory estimation. 

B. Feature tracking 
Fig. 1 shows the number of SIFT matches identified by 

following the two proposed approaches in 4D CT and 4D 
MRI data. In 4D CT, the number of matches was higher 
when moving along the breathing cycle (Panel B) relative to 
keeping phase 0 as the reference (Panel A). In 4D MRI, on 
setting phase 0 as reference (Panel C), the number of 
matches was lower at maximum inhale (phase 6), and was 
higher for the breathing cycle tracking approach (Panel D). 
In 4D MRI, the number of matched features exhibits a 
breathing cycle trend, not seen with 4D CT. This is due to 
the fact that the 4D MRI re-sorting method does not assume 
a constant breathing depth or even strict periodicity and does 
not depend on an external gating signal. Table II reports the 
number of common and preserved matches that were 
included for trajectory reconstruction. The number of 
common matches increased when tracking was performed 
along the breathing cycle, whereas the number of preserved 
matches was larger when phase 0 was set as reference. 
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Results reported in Fig. 1 and Table II show how searching 
in two subsequent breathing phases resulted in an overall 
greater number of features tracked; however, this approach 
excluded some potential features that may have been trailed 
on certain phases only. Conversely, when tracking referred 
to a single phase, only the most stable features were trailed. 

Fig. 2 presents median and variability of residual distance 
distributions in 4D CT and 4D MRI data for both 
approaches. In 4D CT, breathing cycle trailing (Panel B) 
looked more favorable than referring to maximum exhale 
phase (Panel A), due to block artifacts caused by breath to 
breath variation in respiratory amplitude and frequency [13]. 
In 4D MRI (Panel C and D), where these artifacts were not 
present, the two approaches were comparable. 

Fig. 3 shows some common features between maximum 
exhale and inhale phases, represented in the maximum 
exhale phase for 4D lung CT (Panel A) and 4D liver MRI 
(Panel B). Identified features were vessels and bifurcations 
and liver vessels, such as the hepatic portal vein, in the 4D 
CT and 4D MRI, respectively. 

Fig. 4 shows examples of internal trajectories (red line), 
obtained by SIFT feature (blue circle) interpolation. Panel A 
depicts a lung vessel bifurcation trailed throughout the 
breathing cycle. In all directions, we noted a change in the 
trajectory concavity near phase 5, attesting to the presence of 
inhale and exhale phases. Along the superior-inferior (SI) 
direction, feature displacements of 2.5 mm were found. 
Panel B reports the trajectory of a lung vessel, for which 
phase 4 and 7 (black circles) were obtained by means of 
cubic interpolation. The trajectory of hepatic portal vein 
feature is shown in Panel C. SI maximum and AP minimum 
corresponded to phase 6 (i.e. maximum inhale phase) and 
the trajectories looked to follow the respiratory cycle. Right-
left (RL) position confirmed feature stability within the slice. 
Panel D reports the interpolated trajectory of a liver vessel, 
in which the RL position reflected a slice displacement (i.e. 
4 mm) in phase 5, 6 and 7. In all trajectories the 
displacements were proportional to the voxel dimensions. 
This is due to the finite difference derivative computation for 
extremes identification, which involves the concentration of 
the voxel information in its center. As a result, an increasing 
accuracy in feature localization is expected by reducing the 
slice thickness in the image acquisition process.  

Furthermore, the higher image quality of MRI images and 
the presence of internal gating [14] resulted in feature 
trajectories more similar to the theoretical breathing cycle 
trend. Another issue that compromises 4D CT trajectory 
estimation is the presence of changes in air content due to 
ventilation, that might affect the SIFT descriptor directly.  

Finally, the application of the same main SIFT parameters 
to both image modalities could affect results in feature 
identification. Therefore, future work should be dedicated to 
provide an adaptive image-based quantitative selection of 
these parameters. 

 

C. Computational Cost 
The algorithm was derived from [10] and implemented in 

C++ (www.plastimatch.org). The computational 
performance of the application was evaluated using a 2.2 
GHz Intel Core i7 processor. The CPU time required ranged 
between 2 min for 4D MRI and 50 min for 4D CT, proving 
to be highly correlated with the involved image size. 

TABLE I. Number of matches, median and variability of error distributions 
at maximum exhale and inhale phases obtained by SIFT, compared to 

manual identification. 
# Matches Median [mm] Variability [mm]

L0-L5 300 12.98 18.22
SIFT 0-5 509 13.23 17.90

TABLE II. Number of common and preserved matches by keeping phase 
0 as reference and by moving along the breathing cycle for 4D CT and 4D 

MRI data. 
4D CT 4D MRI

Phase 0 as reference Common 60 37 
Preserved 117 24 
Total 177 61 

Along breathing cycle Common 77 41 
Preserved 9 1 
Total 86 42 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Median and variability (computed as difference between 75th and 
25th percentile) of residual distance distributions in 4D CT and 4D MRI 
data for both approaches. (A) 4D CT with phase 0 as reference. (B) 4D 
CT by moving along the breathing cycle. (C) 4D MRI with phase 0 as 

reference. (D) 4D MRI by moving along the breathing cycle. 
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Fig.1. Number of matches for each phase. (A) 4D CT with phase 0 as 
reference. (B) 4D CT by moving along the breathing cycle. (C) 4D MRI 
with phase 0 as reference. (D) 4D MRI by moving along the breathing 

cycle. 
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IV. CONCLUSION 

In this work, we showed that SIFT can be useful for 
automated internal motion estimation. We demonstrated the 
method’s feasibility on a 4D lung CT and 4D liver MRI 
dataset, and validated SIFT matches detected on the 4D CT 
scan by comparing them with manually localized features. 
Main limits of the method are related to image and re-sorting 
quality and to qualitative selection of SIFT parameters. 
Furthermore, optimal trade-off between spatial and temporal 
resolution to reconcile feature localization accuracy with 
computational cost is needed. Future work will be focused on 
extensive SIFT match validation and breathing motion 
tracking applications for external beam radiotherapy.  
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Fig.3. Feature tracking. Common features between maximum exhale 

and inhale phases, shown at maximum exhale for 4D lung CT (A) and 
4D liver MRI (B), in trans-axial and sagittal slices, respectively. 

(A) (B) 

 

 

 

 
Fig. 4. Trajectories (red line) obtained by interpolation of SIFT features 
(blue circle). Absent features are reported (black circle). (A) Bifurcation 
trajectory of lung (4D CT). (B) Vessel trajectory of lung (4D CT), with 

absence in phase 4 and 7. (C) Hepatic portal vein trajectory (4D MRI). (D) 
Vessel trajectory of liver (4D MRI), with no match in phase 4, 8 and 9. 
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