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Abstract—Measurement of gait parameters can provide
important information about a person’s health and safety.
Automatic analysis of gait using kinematic sensors is a newly
emerging area of research. We describe a new way to detect
walking, and measure gait cadence, by using time-frequency
signal processing together with spectrogram analysis of signals
from a chest-worn inertial measurement unit (IMU). A pilot
study of 11 participants suggests that this method is able to
distinguish between walk and non-walk activities with up to
88.70% sensitivity and 97.70% specificity. Limitations of the
method include instability associated with manual fine-tuning of
local and global threshold levels.

1. INTRODUCTION

The ability to measure walking activities can be important for
monitoring certain medical conditions and assessing treatment
efficacy [1]. For example, in a clinical study involving 488
chronic heart failure patients, Passantino reported strong
correlation between the chance of survival and changes in the
distance walked [2]. Walking and balance involves complex
coordination of the limbs and torso [3]. Gait cadence (step
rate) can be determined from small swings in torso angle in the
sagittal plane due to the periodic shifting of moment of inertia
that occurs on each phase [4]. Previous attempts to measure
gait using spectra from torso-attached accelerometers include
Barralon’s estimation of spectral power magnitude using a
Short-time Fourier transform (STFT) and Discrete Wavelet
Transform (DWT) [4]. Barralon reported detection sensitivity
of 78% and specificity of 68.7%. Another approach using
accelerometer and wavelet decomposition was reported by
Bidargaddi to distinguish walking from other high impact
activities with 89.14% sensitivity and 89.97% specificity [1].
This research aims to develop more-accurate gait cycle
analysis for ambulatory monitoring systems, such as those we
are working on at University of Technology Sydney Centre for
Health Technologies [5].

This paper describes a new approach for processing and
analysing signals from a chest-mounted IMU. Section II gives
an overview of the hardware. Section III describes the method.
Section IV presents the data collection. Section V presents
results and analysis, and Section VI provides conclusions.

II. OVERVIEW

This pilot study used a Shimmer MEMS kinematic module
with a 9DoF daughterboard. The 9DoF board has a Freescale
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MMA7361 tri-axial accelerometer, a Honeywell HMC5843
magnetometer, and an InvenSense500 gyroscope.

Data collection and an Attitude Heading Reference System
(AHRS) is run externally in Java 2 Standard Edition (J2SE)
running a custom driver adapted from original Shimmer
driver, with 3-D visualization under jMonkeyEngine 3.0 [6].
The IMU samples at 50 Hz [7]. We do algorithmic
prototyping in MATLAB. The device is strapped on the
participant’s chest in a way that the torso angle can be
observed directly from the pitch measurement. During
walking, the frequency of torso-swing ranges from 0.6 to 2.5
Hz, [4, 8], so we sample data for processing at 20Hz.

III. METHOD

The method includes three processes: torso angle
estimation, time-frequency signal processing, and spectrogram
image processing. First, the orientation quaternion g of the
sensor is estimated using the explicit complementary filter
(ECF) [9] applied to measurements of angular velocity ® and
acceleration a. Pitch information 0 is calculated from the
sensor orientation. The signal is then convolved with a digital
band pass filter (bpf) with cutoff frequencies of 0.5Hz and
5Hz to yield 0,,. Autocorrelation is used to minimize noisy
signals on 0,,. The Discrete Fourier Transform (DFT) is then
be applied to the autocorrelated signal using Bartlett’s method
to extract the spectrogram S(f.¢). Overlapped spectrograms are
averaged. Spectrogram image processing techniques are then
used, starting with smoothing using a Gaussian Filter. A Gabor
filter and median-C thresholding are then used. This is done
by applying a median filter to the Gabor filtered image and
subtracting the result from the normalized image to get the
logical mask M,(f;f). A morphological filter performing
smoothing and erosion is then applied to the logical mask.
Gait cycles such as walk/not-walk and cadence are then easily
extracted. A block diagram is given in Figure 1.

A. Torso Angle Estimation

Torso angle is estimated using ECF applied to the
information from the gyroscope and accelerometers [9]. Our
initial tests suggest that the information provided by these two
sensors is sufficient to estimate torso angle.

The output of the rate gyroscope ® and normalized
accelerometer reading 4 can be represented in vector form as
in (1) and (2). The symbol * denotes a (1-norm) unit vector.

c0=[0 o, o, (Dz]7 (D

a=lo a, a, af ()
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Figure 1. Block diagram describing overall gait parameter measurement - in this case measuring the parameter [walknot-walk].

System attitude 4 is estimated by integrating 4 (3).
Rotation 4 is evaluated using a simple quaternion product of
the current estimate and the compensated gyroscope
measurement (4). Innovation 9 is updated using proportional-
integral (PI) compensation (5). The proportional gain Kp
corrects the attitude information by referring to gravity. The
integral gain K; cormrects gyroscope bias. The error is the
relative rotational discrepancy between the 4 estimate of the z-
axis of the inertial frame and the gravitational reference from
the accelerometer 4 (6-7).

4= [ aa ®)
éz—q@(m+8) “4)
) KPe+K1J.edt (5)
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The orientation of the torso is then calculated using a
quaternion to Euler angle transformation (8),

0 — tan! 2G04 2*@2&32) ®)
1-2G," + 4,
In (8), orepresents the pitch angle equivalent of the
quaternion that corresponds to the torso angle as per the

installed orientation of the sensor.

A block diagram describing the data flow of the torso
orientation estimation algorithm is given in Figure 2.

B. Time-Frequency Signal Processing

On detection period 7, which is set to happen every 20
samples, the time domain signal of torso angle is first filtered
with a band pass filter. Autocorrelation is applied to the
filtered signal to extract its fundamental frequency and reduce
unwanted noise. The signal is transformed using Bartlett’s
method to estimate the power spectra.

A 4™ order Butterworth filter with cutoff frequencies of 1
Hz and 5 Hz is used because of its perfectly flat frequency
response within its pass band. Autocorrelation is used to
extract fundamental frequency of a single tone signal based on
its periodicity. This property is highly useful for gait
parameter analysis where the gait-cadence frequency is of

primary interest [10]. The waveforms before and after the time
frequency signal processing are shown in Figure 3.
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Figure 2. Block Diagram of the Torso Orientation Estimation
Algorithm
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Figure 3. Torso angle 8 and and its band passed filtered signal with
respect to time during walk (top) and autocorrelation (bottom)
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Spectrogram overlaps are averaged as more signals are
collected over time. Blackman-Harris windows are used for
each DFT transform. In this situation, Bartlett’s method is
preferable to that of conventional STFT because the
spectrograms it produces are denser, more defined, and less
noisy. One of the important features of walking is its relatively
constant frequency, thus to detect walking, and measure
cadence, it is necessary to process the signal in a way that
preserves information relevant to gait cadence.

C. Spectrogram Image Processing

Spectrogram image processing is exploited as a powerful
signal processing method in many fields including speech
processing [11] and biomedical engineering [12, 13]. Recent
research by El-Gohary demonstrated the capability of
spectrogram analysis using kinematic sensors to track tremors
in Parkinson Disease patients in free-living conditions [13].
We were interested in exploring whether spectrogram image
processing could be used to extract gait cycle information. To
do this, we decided to try to extract characteristic “blobs”
associated with walking activity. The time-frequency signal
processing had filtered out most of the unwanted noise from
the spectrogram. However some significant information
remained, which, for the purposes of gait parameter
measurement, could still be considered noise. This includes
non-gait “noise” from large movements such as standing up,
sitting, lying down, coughing, looking around, and other high
magnitude torso orientation changes that occur during
ordinary daily activities. A further challenge we found is that
some gait cadences are not sufficiently regular to allow
detection solely by identifying periodicity.
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Figure 4. Block diagram of Spectrogram Image Processing for walk
detection

Our approach is summarized in the block diagram in
Figure 4. After normalization to a 5 bit (32 brightness level)
image (Figure 7 top left), the normalized spectrogram image is
filtered using a Gabor filter. Gabor filters are proposed to be
powerful for texture segmentation [14]. Given our sampling
frequency of 20 Hz and 128 DFT bins we defined a Gabor
kernel with the following characteristics. The orientation of
the filter is set at 0 degrees, to accentuate horizontal lines. The
horizontal variance is set to 2 (frequency bandwidth of 0.0781
Hz). The vertical variance is set to 400 (time smoothing for 20
seconds) to magnify and connect disjoint frequencies in the
time axis. The wavelength of the sinusoid is set to 1 pixel,
which is approximately the frequency bandwidth of 0.0391Hz.
An example of a Gabor-filtered image is seen in Figure 5 (top
right).

We use both local and global thresholding approaches to
preserve important information in a similar way to an
approach described by Steinberg for speech spectrogram
analysis [11]. To get the local image, a median filter is applied
to the Gabor filtered image (Figure 5 bottom left). The result
is subtracted from the normalized image. The global image is
simply the Gabor filtered image. The local and global
thresholds Cjyy and Cyjppy are then applied to both images.
Both local and global binary masks M » and M@ , are
combined to create the final binary mask Af,. This mask
contains logical information of how the blobs are shaped. We
then perform smoothing and erosion to filter out most small
noises and join closely separated blobs. We identify blobs that
satisfy predefined shape parameters. The parameters include a
centroid frequency of between 0.6Hz and 2.5Hz, frequency
fluctuation of lower than 1Hz and continuity of higher than 15
seconds. The result of the algorithm can be seen in Figure 5,
bottom right.

Figure 5. Normalized image (top left), Gabor filtered image (top
right), median filtered Gabor Image (bottom left), detection of walk
from binary mask after morphology filter (bottom right).

IV. EXPERIMENTAL SETTINGS AND DATA COLLECTION

The algorithm was tested using data recorded from 11
participants. Three of the participants are elderly people aged
over 55. The data was collected in an office environment. The
data collection scheme was devised to resemble movements
associated with ordinary daily living activities. Each data
collection period consisted of ten to fifteen minutes of data
collection per participant. During each data collection period,
the subjects typically alternated between walking and not
walking for a few minutes at a time.

The participants were encouraged to relax and move
however they wanted to. The activities of the participants
during non-walk periods included talking, browsing the
internet, standing up/sitting down, lying down, making coffee,
writing, drawing, playing a musical instrument, singing,
playing computer games, stretching, and reading books. The
participants were also encouraged to walk at a comfortable
pace for a period of around two minutes to five minutes.
Casual activity such as talking, eating and drinking was
encouraged throughout the whole data collection period.
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V. RESULTS AND DISCUSSIONS

A total of 3617.6 seconds (72352 samples) of walking
activity and 5511.2 seconds (110223 samples) of not-walking
activity were recorded. Processed data relating to walking is
shown in Figure 6, and processed data relating to not-walking
is shown in Figure 7. Comparing Figure 6 with Figure 7, it can
be seen that the morphology of walking activity appears quite
different from that of non-walking activity. Using simple
extraction of binary morphology properties such as minor axis
length, major axis length, and centroid locations, walking
activity is distinguishable from not-walking activity.

Table I shows the performance using different local and
global threshold levels. The threshold levels are estimated by
trial and error based on pixel values in the produced local and
global images. The method achieved 88.70% sensitivity and
97.70% specificity using local threshold Cy,.,/~=0.05 and global
threshold Cjpp,=0.2. These threshold values are manually
fine-tuned to properly capture the walking morphology in the
spectrogram. These results suggest a significant improvement
on specificity compared with prior research [1, 4, §].
Rejecting noises based on spectrogram analysis is
straightforward as the time-frequency morphology of walking
is visually distinguishable to other activities. This quality,
however, makes it harder to increase detection sensitivity.

Table 1. Performance at various thresholds

Threshold Level Performance
Crocat Catobal Sensitivity Specificity
0.03 0.1 45.59% 99.18%
0.03 0.4 43.37% 90.72%
0.03 0.3 60.65% 98.17%
0.05 0.15 83.29% 97.70%
0.03 0.2 85.83% 97.70%
0.05 0.2 88.70% 97.70%

VI. CONCLUSIONS AND FUTURE DIRECTIONS

Using an accelerometer and a gyroscope, the results of the
pilot study suggest that spectrum analysis may be useful for
measuring certain gait parameters, including the ability to
distinguish walking activity from other activity. We have
shown that greater specificity can be achieved from
investigating morphology features of the spectrogram image.
A limitation of the method is instability due to the need for
(manually performed) fine-tuning of the local and global

Figure 7. Processed data relating to not-walking.

threshold levels. Our plans for the future include further work
to implement automatic tuning of local and global threshold.
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