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Abstract² This paper applies an expectation-maximization 

(EM) based Kalman smoother (KS) approach for single-trial 

event-related potential (ERP) estimation. Existing studies 

assume a Markov diffusion process for the dynamics of ERP 

parameters which is recursively estimated by optimal filtering 

approaches such as Kalman filter (KF). However, these studies 

only consider estimation of ERP state parameters while the 

model parameters are pre-specified using manual tuning, which 

is time-consuming for practical usage besides giving suboptimal 

estimates. We extend the KF approach by adding EM based 

maximum likelihood estimation of the model parameters to 

obtain more accurate ERP estimates automatically. We also 

introduce different model variants by allowing flexibility in the 

covariance structure of model noises. Optimal model selection is 

performed based on Akaike Information Criterion (AIC). The 

method is applied to estimation of chirp-evoked auditory 

brainstem responses (ABRs) for detection of wave V critical for 

assessment of hearing loss. Results shows that use of more 

complex covariances are better estimating inter-trial variability. 

 

 Index Terms- Event-related potentials, Kalman smoother, 

expectation-maximization algorithm. 

 

I. INTRODUCTION 

Event-related potentials (ERPs) are scalp-recorded 

bioelectrical response of the brain elicited by specific 

stimulation. The challenge is to extract the underlying ERPs 

in various noises e.g. background electroencephalogram 

(EEG) and non-neural artifacts, typically with poor signal-to-

noise (SNR) ratio. The conventional ensemble averaging of 

time-locked single-trials cancels out the assumingly random 

background noise, however, requires many repeated 

simulations and implies loss of information related to trial-

to-trial variability due to different degree of fatigue, 

habituation, or levels of attention of subjects [1]. Various 

approaches have been proposed to solve single-trial ERP 

estimation problem which is also considered in this paper. 

Optimal filtering approaches have been recently 
introduced for single-trial dynamical estimation of the non-
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stationary ERPs [1]-[4]. The inter-trial dynamics of ERP 
parameters are modeled as a Markov process observed in 
observation noise to give noisy measurements. The model is 
formulated into state-space form. Then, the single-trial ERP 
estimation problem is cast into optimal filtering one which 
involves recursive estimation of filtering densities of the 
underlying clean ERPs given noisy measurements. The 
filtering density of ERP can be computed exactly by Kalman 
filter (KF) [1] or approximated by swarms of weighted 
samples using particle filter (PF) [3], [4]. Evaluation results 
show the capability of these methods in estimating the inter-
trial ERP parameter changes in low SNR condition. The KF 
approach by [1] is adopted here, justified by the linear-
Gaussian form assumption of the abovementioned ERP 
dynamic model for which KF yields minimum mean-square 
error (MMSE) estimators. Besides, KF provides exact 
solution in simple analytical way while PF suffers 
approximation error and high computational complexity. The 
KF based ERP estimation has been extended in [2] to 
Kalman smoother (KS) algorithm which utilizes both the 
past and future observations to infer more accurate ERP 
estimates. Use of KS shows better performance in term of 
tracking ability and noise reduction of ERPs. 

The estimation of the state of ERP parameters in the 
above-mentioned studies is performed by assuming that the 
model parameters are known, which in fact pre-specified by 
subjective manual tuning. This is impractical and only yields 
suboptimal solutions. The aim of this paper is to consider the 
problem where the model parameters of the ERP dynamic 
model are unknown, and need to be estimated automatically 
from the data. Expectation-maximization (EM) algorithm in 
conjunction with KS for maximum likelihood parameter 
estimation in linear-Gaussian state-space models has been 
developed [5], [6]. This paper applies the EM method for 
estimating the parameters of the ERP dynamic model which 
is a special case of linear-Gaussian model. The EM 
algorithm has been used for EEG spectral estimation of 
event-related desynchronization (ERD) by [7] based on time-
varying autoregressive model which is distinct from the ERP 
model considered here. The issue of optimal choice for 
covariance of model noises is discussed but not studied in [1] 
who only set diagonal with identical entries, based on 
uncorrelation assumption of ERP parameter evolution, which 
is often invalid for real ERP processes. We allow the noise 
covariance to be of arbitrary structure where the optimal 
model choice is selected based on Akaike Information 
Criterion (AIC) which balance the goodness of fit and model 
complexity. The better modeling of the process is expected 
to give more accurate ERP estimates and better de-noising. 
For observation model, we use wavelet coefficient as ERP 
parameters as suggested in [3] instead of measurement vector 
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TABLE I.  LOG-LIKELIHOODS AND AIC OF FITTED MODELS WITH 

DIFFERENT NOISE COVARIANCES. 

Model 
No. of 

Parameters 
Log-like AIC 

(a) R 0.193 I , Q 0.247 I  2 -354.58 713.2 

(b) R-Identity, Q-Full 196 -483.8 1359.5 

(c) R-Identity, Q-Diagonal 14 -486.8 1001.5 

(d) R-Diagonal, Q-Diagonal 28 -439.8 935.6 

(e) R-Full, Q-Diagonal 210 -74.4 568.7 

(f) R-Full, Q 0.073 I  197 -61.5 517.0 

 

model is the one that minimizes the AIC values. We consider 
the simple ERP model with diagonal noise covariances with 
identical entries [Table I(a)] and five more complex variants 
of ERP model [Table I(b)-(f)]  formulated by varying the 
covariance structure. For all models, the covariance 
parameters are estimated using EM algorithm with stopping 

criterion 0.0001H  . The ML estimates of 2

vV and 2

wV  for 

model (a) are 0.1933and 0.2472 respectively. The ML 

estimates of 2

wV  for model (f) is 0.0725. Its estimated full 

covariance matrix R is shown in Fig. 1. The obtained log-
likelihoods and AICs for different noise covariances are 
given in Table I. The AIC criterion suggests that the model 

with full R and identical diagonal Q outperforms all other 

models, with slightly better than use of non-identical 

diagonal Q instead. This somehow implies that assumption 

of each parameter changes differently is unnecessary. Fig. 2 
shows that log-likelihood of the AIC best model increase 
monotonically and converges to -61.5after 10 iterations. 

Fig. 2 shows the estimation results of ABRs by different 
techniques. The single-trial ABR estimates are presented in 
image (top plots) and epochs (middle plots). Fig. 3(a) shows 
the noisy ABR measurements with SNR=-18.91dB where the 
trace of wave V is hardly seen. The SNR for single-trials 
refer to [15]. The noise is greatly reduced by moving 
averaging every 10 trials, as shown in Fig. 3(b) which 
improves the SNR to -5.18dB. However, the wave V trace is 
barely seen in the epoch plots and still obscured by 
background noise in the image plot. Reconstruction from 
level-6 approximation wavelet coefficients which represent 
the low frequency component reveal the smooth ABR 
waveforms [Fig. 3(c)], with high frequency noise clearly 
removed, achieving better SNR of 0.17dB. Besides, the 
underlying single-trial dynamics are clearly exhibited and 
wave V is more profound. Fig. 3(d)-(f) show the clean 
estimates reconstructed from the estimated parameters by 
EMKS methods. All these estimates shows clearer wave V. 
As expected, EMKS further reduce random noise of ABR 
waveform shape in Fig. 3(c) giving SNR=5.13dB, 5.94dB 
and 7.09dB respectively. The use of full matrix in R , 
allowing correlation and different noise volatilities along 
each dimensions in observation noise, gives better reduction 
in noise, than the setting R  as diagonal with identical entries. 
Among the full R model, the estimates are comparable with 

slightly more changes for using identical Q . From the 
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Figure 1.  The ML estimates of full covariance matrix R of Model(f). (The 

image plot is scaled) 
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Figure 2.  Log-likelihood as a function of interation of EM algorithm. 

estimated latencies of wave V at bottom plots, the filtering 
methods show precise and consistent wave V location. 

IV. CONCLUSION 

This paper has applies an expectation-maximization 
(EM) based Kalman smoother (KS) approach for single-trial 
event-related potential (ERP) estimation. The existing 
studies only considers state estimation of ERP parameters by 
assuming the ERP model parameters known, which is in fact 
pre-specified by impractical manual tuning. The EM 
algorithm with KS solves both state and model estimation in 
a fully automatic way, and gives maximum likelihood 
estimates of the parameters. We also allow the noise 
covariance to be of arbitrary form to better models the 
individual parameter evolution and correlation in observation 
noise along each dimension. Selection using AIC criterion 
confirm the superiority of more complex models i.e. 
full R covariance over the use of diagonal with fixed entries. 
Evaluation on single-trial ABR estimation shows that use of 
full R covariance gives better performance in noise 
reduction. The model selected is based on one dataset and 
might not be robust against other dataset. The optimal model 
generally for ABR signals could be determined based on 
large dataset. The proposed method could be further 
evaluated on ABRs from subjects with hearing loss. 
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Figure 3.  Estimation of single-trial ABR dynamics by different techniques. (a) Raw ABR measurements. (b) Moving -averaged ABRs. (c) Wavelet-

denoied ABRs. (d)-(f) ABR estimates by EMKS methods. (d) 0.193 R I , 0.247 Q I  (e) R-Full, Q- Diagonal. (f) R-Full, 0.073 Q I . Top plots: 

ABR image; middle plots: epochs and their mean; bottom plots: latencies. 
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