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An Expectation-Maximization Algorithm based Kalman Smoother
Approach for Single-Trial Estimation of Event-related Potentials

Chee-Ming Ting, S. Balqis Samdin, Sh-Hussain Salleh, M. Hafizi Omar and I. Kamarulafizam

Abstract— This paper applies an expectation-maximization
(EM) based Kalman smoother (KS) approach for single-trial
event-related potential (ERP) estimation. Existing studies
assume a Markov diffusion process for the dynamics of ERP
parameters which is recursively estimated by optimal filtering
approaches such as Kalman filter (KF). However, these studies
only consider estimation of ERP state parameters while the
model parameters are pre-specified using manual tuning, which
is time-consuming for practical usage besides giving suboptimal
estimates. We extend the KF approach by adding EM based
maximum likelihood estimation of the model parameters to
obtain more accurate ERP estimates automatically. We also
introduce different model variants by allowing flexibility in the
covariance structure of model noises. Optimal model selection is
performed based on Akaike Information Criterion (AIC). The
method is applied to estimation of chirp-evoked auditory
brainstem responses (ABRs) for detection of wave V critical for
assessment of hearing loss. Results shows that use of more
complex covariances are better estimating inter-trial variability.

Index Terms- Event-related potentials, Kalman smoother,
expectation-maximization algorithm.

1. INTRODUCTION

Event-related potentials (ERPs) are scalp-recorded
bioelectrical response of the brain elicited by specific
stimulation. The challenge is to extract the underlying ERPs
in various noises e.g. background -electroencephalogram
(EEG) and non-neural artifacts, typically with poor signal-to-
noise (SNR) ratio. The conventional ensemble averaging of
time-locked single-trials cancels out the assumingly random
background noise, however, requires many repeated
simulations and implies loss of information related to trial-
to-trial variability due to different degree of fatigue,
habituation, or levels of attention of subjects [1]. Various
approaches have been proposed to solve single-trial ERP
estimation problem which is also considered in this paper.

Optimal filtering approaches have been recently
introduced for single-trial dynamical estimation of the non-
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stationary ERPs [1]-[4]. The inter-trial dynamics of ERP
parameters are modeled as a Markov process observed in
observation noise to give noisy measurements. The model is
formulated into state-space form. Then, the single-trial ERP
estimation problem is cast into optimal filtering one which
involves recursive estimation of filtering densities of the
underlying clean ERPs given noisy measurements. The
filtering density of ERP can be computed exactly by Kalman
filter (KF) [1] or approximated by swarms of weighted
samples using particle filter (PF) [3], [4]. Evaluation results
show the capability of these methods in estimating the inter-
trial ERP parameter changes in low SNR condition. The KF
approach by [1] is adopted here, justified by the linear-
Gaussian form assumption of the abovementioned ERP
dynamic model for which KF yields minimum mean-square
error (MMSE) estimators. Besides, KF provides exact
solution in simple analytical way while PF suffers
approximation error and high computational complexity. The
KF based ERP estimation has been extended in [2] to
Kalman smoother (KS) algorithm which utilizes both the
past and future observations to infer more accurate ERP
estimates. Use of KS shows better performance in term of
tracking ability and noise reduction of ERPs.

The estimation of the state of ERP parameters in the
above-mentioned studies is performed by assuming that the
model parameters are known, which in fact pre-specified by
subjective manual tuning. This is impractical and only yields
suboptimal solutions. The aim of this paper is to consider the
problem where the model parameters of the ERP dynamic
model are unknown, and need to be estimated automatically
from the data. Expectation-maximization (EM) algorithm in
conjunction with KS for maximum likelihood parameter
estimation in linear-Gaussian state-space models has been
developed [5], [6]. This paper applies the EM method for
estimating the parameters of the ERP dynamic model which
is a special case of linear-Gaussian model. The EM
algorithm has been used for EEG spectral estimation of
event-related desynchronization (ERD) by [7] based on time-
varying autoregressive model which is distinct from the ERP
model considered here. The issue of optimal choice for
covariance of model noises is discussed but not studied in [1]
who only set diagonal with identical entries, based on
uncorrelation assumption of ERP parameter evolution, which
is often invalid for real ERP processes. We allow the noise
covariance to be of arbitrary structure where the optimal
model choice is selected based on Akaike Information
Criterion (AIC) which balance the goodness of fit and model
complexity. The better modeling of the process is expected
to give more accurate ERP estimates and better de-noising.
For observation model, we use wavelet coefficient as ERP
parameters as suggested in [3] instead of measurement vector
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itself as in [1] to reduce state dimension and hence
computational effort. Our method is evaluated on auditory
brainstem responses (ABRs) estimation especially the wave
V for detection of hearing loss.

The paper is organized as follow. Section II describes the
state-space formulation of ERP models with state and model
parameter estimation using the EM based KS approach.
Section III presents evaluation results on ABR estimation.
Conclusion is given in final section.

II. METHODS

A. State-Space Modeling of ERPs

We consider the state-space formulation of ERP dynamic
model suggested by [1], but use wavelet coefficients as ERP
parameters instead of direct measurement samples as in [3]
to reduce state dimension. Approximation coefficients of
discrete wavelet transform (DWT) are used to represent the
low frequency spectral components in ERP which is typically

a smooth transient wave [3]. Let denote by
Y, =¥, s» V> ¥,p] sequence of T approximation
wavelet coefficients extracted from single-trial ERP

measurements at trial n. The state-space model of ERP

dynamics consists of observation equation and state
equation, respectively as [1], [3]
Y, =%, Vv, (1
X, :Xn71+wn (2)

The observation process of ERPs{y,}is typically modeled

by linear additive noise model of the form (1) where x, is
the state vector of clean ERP parameters, here also
represented by wavelet coefficients, hidden in background
noise v which is 7 x1i.i.d. Gaussian noise with mean zero

and static covariance matrix R, v, ~ N(0,R) . The hidden
state x_ is assumed to follow first-order Gauss Markov
process as in (2) where w, is ii.d. zero mean Gaussian state
noise with covariance matrix Q ,w, ~ N(0,Q). R andQ are
T x T matrices and assumed static i.e. do not vary with time.
To better model the ERP process, we allow arbitrary form
forR and Q , which are assumed inappropriately as diagonal
with identical entries R = crvzl and Q = o‘il in [1], [3].
R andQ can be set full matrix to model respectively the
correlation in observation noise along each dimension and
individual ERP parameter evolutions, which is typically
present in real ERP process. Besides, the diagonal of Q can
be non-identical to allow different magnitude of changes for
each parameter. Different choices of covariance have been
investigated for state-space modeling of speech [8]. By
denoting 8 = (R,Q) the model parameters of the fully
specified ERP state-space model, the objective is to estimate
recursively the unknown trial-varying state vectors of clean
ERP wavelet parameters x , given® . This is solved here by
KS. Inverse wavelet transform is then applied to the
estimated wavelet coefficients to reconstruct the clean ERP

waveform. In this paper, @is assumed unknown and
estimated automatically by maximum likelihood using EM
algorithm from the dataset.

B. Estimation of ERP Parameters

The estimation problem involves estimating recursively
the filtering density of x, conditional on measurement

sVt the model 0,
denoted by p,(x, |y,,). For the linear Gaussian model

sequencey,, = {y,, - given here
considered here, the mean and covariance of p,(x, |y,,)can
be obtained analytically by KF. The conditional mean
E(x,|y,.,)is the MMSE estimator ofx, . Let %, and
P denote the mean and covariance of the one-step ahead
prediction density py(x, [y, ,); %,,and P, denote the
mean and covariance of the filtering density py(x, | y,,)-

The Kalman recursions for 1 < » < N are given as [1]:

ﬁn\n—l = ﬁn—l\n—l (3)
P =P, +Q 4
K, =P+ P+ R)" (5)
X =X, KLy, —%,,00) (6
P, =0-K)P, , (M

with initial condition %4, = x,and Py, =X . K is called

Kalman gain. e, =(y, L +R) are

respectively the prediction error and its covariance.

-%,,-)and P, =(P

nln—

Future measurements y, ., can be used to correct
filtered estimates by performing fixed-lag smoothing ofx ,

which  involves smoothing  density
Po(X, 1Y, ) given The smoothed

estimator £(x, |y, , ) is more accurate than the filtered one.
We denote by &

estimating  the
measurementsy, ., .

Jvand P the mean and covariance

of py(x,ly,). Based on the estimates by the forward

filtering recursion, the smoothed estimates can be obtained
by backward recursion forn = N -1,N - 2,...,1[6], [7].

-1
Jn = Pn\nPn+1\n (8)
ﬁn\N = ﬁn\n + Jn(ﬁnJrl\N - §n+1\n) (9)
T
1:.n\N = Pn\n + Jn(PnJrl\N - Pn+1\n )Jn (10)

with initial estimates %, and P, given by KF.

C. Estimation of Model Parameters with EM Algorithm

The ML estimate of 0 is obtained by maximizing the
marginal likelihood of y, , with respect to 0

0,, =argmaxlog py(y.»)

(11)

wherelog p, (y,.,) for linear Gaussian model here can be
computed analytically using KF as follows
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N
10g p9(y1:N) = Z 7110g p9(yn ‘yl:nfl)

N
- Z g N5 %0 R, (12)

3

EM method is used for ML estimation when both model
and state parameters are unknown. EM algorithm was first
introduced by [9] and has been used for parameter estimation
in linear Gaussian state-space models in [5] [6]. We describe
the EM algorithm for our model @ based on the procedure in
[6],[7], as following two-steps repeated iteratively:

T4 -1
Pe,, +enPenen}—C

1) E-Step: Involve computing the expected log likelihood
O = E[log py (X ¥y | Yi.x)] given the model estimates at

k™ iteration ® . - This quantity depends on expectations:

ﬁn\N = E(Xn ‘yI:N) (13)
T A AT
Sn\N = E(ann ‘yl:N): 1)n\N +Xn\NXn\N (14)
T A AT
Sn,nfl\N = E(annfl ‘ yl:N) = Pn,nfl\N + Xn\NXn—l\N (15)

The first two quantities are obtained from KS estimates
while for the last through backward recursion [6]:

T T
Pn,nfl\N = Pn\anfl + Jn(PnJrl,n\N - Pn\n)Jn—l (16)

which is initialized Pynaw =A-K Py .

1) M-Step: The model parameters are re-estimated by
maximizing the Q function over® which is done by taking
the corresponding partial derivative of @ and setting zero.
Solving it gives the updated parameter estimates as follows:

N
30 N -1 1
—:—Qf—z (S -8 -8 48 )=0
—1 n|N n—1,n|N n,n—1|N n—1|N
aQ 2 2 n=2
N
Qk”:l— (S, - -s +s oy (17)
N1 n|N n—1,n|N n,n—1|N n—1|N
n=2
and
00 N Yo |
=R (Y, Y, S,y) =0
1 nv n n|NJn n|N
oR 2 — 2 2

(18)

N
1
k+1 T oy T
R¥ ;Z (V¥ = 28,5, +S,x)

n=1

Equation (17) and (18) involve estimation of full matrix,
however, estimation for cases whenR andQ are diagonal
and/or with identical entries is not considered in [6], [7].
Here, we adopt the derivations in [10] for estimation of these
constrained cases. Details refer to [10]. By denoting
vec(D dyyordypdiyd,yy-d
constrained estimation equation for Q is given as

.d, 1", the general

nxm): 1m *°

1 T -1 T
q""'=——®/D ) 'D] vec(H)
N -1

)=D,q"" (19)

where q contains column vector of p free parameters to
estimate withq = [crfv] and q = diag(Q) for diagonal with

entries

. T
denote diag(A , ) =[a,,,ay,,>a,,] -

>nn

identical and non-identical respectively, we

D, is the
7% x p design matrix and § is computed as (17)

| N
H=— (S, -S
N1 n|N
n=2

aety =Sy TS, yw)

The constrained estimations forR are performed similarly
withH computed using (18). We found that estimating
diagonal matrix using (19) gives the same estimates as the
updated matrices by (17) and (18) with off-diagonals set
zeros [8].

The EM steps increase the likelihood monotonically with
guaranteed convergence to a local maximum. The iteration is
stopped when p,  (y.y) = Py, (Y.x) < & Wherees is a small

threshold, and the ML estimates of 0 is obtained.

III. EXPERIMENTAL RESULTS

This section presents performance evaluation of the
proposed methods for single-trial estimation of chirp-evoked
ABRs from a subject with normal hearing. ABR comprises
the early portion of auditory evoked potentials elicited by
acoustic stimulus, and is composed of several waves labeled
with roman numerals I-VII, among which waves III and V
are the focus of this paper. The ABR waveform
characteristics are useful for objective assessment of hearing
loss and pathologies affecting auditory brainstem pathways.
Refer [11] for details. The ABR has variabilities across
trials, different subjects and stimulus intensities [12], [13].

The data are obtained following the procedure in [14].
The ABRs were elicited by the properly calibrated chirps
presented at rate 20 Hz through a headphone. The potentials
were recorded using electrode placed at positions Al, A2, Cz
and the ground Fpz, at sampling frequency of 19.2 kHz. Data
of 500 ABR single-trials from passive electrode at 60 dB
intensity levels of sound pressure level (SPL) is used for
analysis. The data was band-pass filtered with cutoff
frequencies of 0.1 and 1.5 kHz and down-sampled to 14.4
kHz. The data is segmented to fixed time frame where the
wave III and IV are located. The trials are smoothed with 10-
trial moving window for every 10 trials, and parameterized
by level-6 approximation wavelet coefficients of bior5.5
wavelet transform, which are used in subsequent estimation.

Selection of the optimal choice for noise covariances is

performed using AIC criterion
AIC = 2log p;  (¥,) + 2k (20)

where £ is the number of estimated parameters. The optimal
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TABLE L. LOG-LIKELIHOODS AND AIC OF FITTED MODELS WITH
DIFFERENT NOISE COVARIANCES.
Model Pall'\i\(:;lgfers Loglike | AIC
(@) R =0.193I, Q =0.2471 2 -354.58 713.2
(b) R-Identity, Q-Full 196 -483.8 1359.5
(c) R-Identity, Q-Diagonal 14 -486.8 1001.5
(d) R-Diagonal, Q-Diagonal 28 -439.8 935.6
(e) R-Full, Q-Diagonal 210 -74.4 568.7
(f) R-Full, Q =0.0731 197 -61.5 517.0

model is the one that minimizes the AIC values. We consider
the simple ERP model with diagonal noise covariances with
identical entries [Table I(a)] and five more complex variants
of ERP model [Table I(b)-(f)] formulated by varying the
covariance structure. For all models, the covariance

parameters are estimated using EM algorithm with stopping

criterion & = 0.0001. The ML estimates of o’ and o for

model (a) are 0.1933and 0.2472 respectively. The ML
estimates of o2 for model (f) is 0.0725. Its estimated full

covariance matrix R is shown in Fig. 1. The obtained log-
likelihoods and AICs for different noise covariances are
given in Table I. The AIC criterion suggests that the model
with full R and identical diagonal Q outperforms all other
models, with slightly better than use of non-identical
diagonal Q instead. This somehow implies that assumption
of each parameter changes differently is unnecessary. Fig. 2
shows that log-likelihood of the AIC best model increase
monotonically and converges to -61.5after 10 iterations.

Fig. 2 shows the estimation results of ABRs by different
techniques. The single-trial ABR estimates are presented in
image (top plots) and epochs (middle plots). Fig. 3(a) shows
the noisy ABR measurements with SNR=-18.91dB where the
trace of wave V is hardly seen. The SNR for single-trials
refer to [15]. The noise is greatly reduced by moving
averaging every 10 trials, as shown in Fig. 3(b) which
improves the SNR to -5.18dB. However, the wave V trace is
barely seen in the epoch plots and still obscured by
background noise in the image plot. Reconstruction from
level-6 approximation wavelet coefficients which represent
the low frequency component reveal the smooth ABR
waveforms [Fig. 3(c)], with high frequency noise clearly
removed, achieving better SNR of 0.17dB. Besides, the
underlying single-trial dynamics are clearly exhibited and
wave V is more profound. Fig. 3(d)-(f) show the clean
estimates reconstructed from the estimated parameters by
EMKS methods. All these estimates shows clearer wave V.
As expected, EMKS further reduce random noise of ABR
waveform shape in Fig. 3(c) giving SNR=5.13dB, 5.94dB
and 7.09dB respectively. The use of full matrix inR,
allowing correlation and different noise volatilities along
each dimensions in observation noise, gives better reduction
in noise, than the setting R as diagonal with identical entries.
Among the full R model, the estimates are comparable with
slightly more changes for using identical Q . From the

- - o

The ML estimates of full covariance matrix R of Model(f). (The
image plot is scaled)

Figure 1.
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Figure 2. Log-likelihood as a function of interation of EM algorithm.

estimated latencies of wave V at bottom plots, the filtering
methods show precise and consistent wave V location.

IV. CONCLUSION

This paper has applies an expectation-maximization
(EM) based Kalman smoother (KS) approach for single-trial
event-related potential (ERP) estimation. The existing
studies only considers state estimation of ERP parameters by
assuming the ERP model parameters known, which is in fact
pre-specified by impractical manual tuning. The EM
algorithm with KS solves both state and model estimation in
a fully automatic way, and gives maximum likelihood
estimates of the parameters. We also allow the noise
covariance to be of arbitrary form to better models the
individual parameter evolution and correlation in observation
noise along each dimension. Selection using AIC criterion
confirm the superiority of more complex models i.e.
full R covariance over the use of diagonal with fixed entries.
Evaluation on single-trial ABR estimation shows that use of
fullR covariance gives better performance in noise
reduction. The model selected is based on one dataset and
might not be robust against other dataset. The optimal model
generally for ABR signals could be determined based on
large dataset. The proposed method could be further
evaluated on ABRs from subjects with hearing loss.
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Figure 3. Estimation of single-trial ABR dynamics by different techniques. (a) Raw ABR measurements. (b) Moving -averaged ABRs. (c) Wavelet-

denoied ABRs. (d)-(f) ABR estimates by EMKS methods. (d) R =0.1931, Q

=0.2471 (e) R-Full, Q- Diagonal. (f) R-Full, Q =0.073I . Top plots:

ABR image; middle plots: epochs and their mean; bottom plots: latencies.
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