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Abstract— Two methods for output regularization of support
vector machines (SVMs) classifiers were applied for seizure
prediction in 10 patients with long-term annotated data. The
output of the classifiers were regularized by two methods: one
based on the Kalman Filter (KF) and other based on a measure
called the “Firing Power” (FP). The FP is a quantification of
the rate of the classification in the preictal class in a past
time window. In order to enable the application of the KF,
the classification problem was subdivided in a two two-class
problem, and the real-valued output of SVMs was considered.

The results point that the FP method raise less false alarms
than the KF approach. However, the KF approach presents an
higher sensitivity, but the high number of false alarms turns
their applicability negligible in some situations.

I. INTRODUCTION

Among the patients that suffer from epilepsy, 30% are
resistant to medication and surgery is not an option [1]. The
unique way to improve the quality of life of these patients
would be by seizure anticipation methodologies that could
predict efficiently, and with a comfortable time in advance,
the upcoming seizures. In a next step, the time between the
prediction and the seizure onset time would be used to take
preventive actions, such as drug administration.

Seizure prediction is usually based on the processing of the
raw EEG data. This processing result in a set of descriptors,
the so-called features, that are expected to present coherent
changes before seizures. Several descriptors from time, fre-
quency and time-frequency domains have been considered
(see [2]). Traditionally features were considered indepen-
dently and alarms were raised when the selected feature
crosses an optimized threshold level [3]. More recently,
seizure prediction was faced as a classification problem. This
approach is based on the labeling of feature samples in sev-
eral brain states[4], [5], [6]. The classification is implemented
in first place by considering a high dimensional feature
space, i.e., by feeding the classifier with several features
simultaneously. It was reported that feature combination has
the potential to improve the seizure prediction performance
[7], [5], [8]. Having in mind to increase the separability
between patterns, the dimensionality of the input space is
usually augmented by applying non-linear classifiers. Among
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the available non-linear classifiers, support vector machines
(SVMs)[9] with Gaussian kernels have been pointed as
prospective classifiers for seizure prediction [5], [8]. The
output of the SVM classifiers can be directly used to predict
seizures [5]. However, in order to reduce the number of
false alarms a post-classification stage is usually employed
[8], [10]. In [8] a Kalman Filter was applied to regularize
seizure prediction by SVM. In [10], a new methodology to
regularize the output of SVM, and also of artificial neural
networks, was introduced as part of the EPILAB package.
This methodology computes a measure that discriminated the
rate of classification in the preictal class, called the “Firing
Power (FP). If FP crosses a predefined threshold under some
pre-established conditions then an alarm is raised.

In this paper we explore the output regularization of SVMs
by two different approaches: by the technique proposed in
[10] and by the Kalman Filter (KF) technique. For this
purpose we implemented a dual SVM classification schema
that enables trustworthy comparisons.

II. METHODS AND DATA

A. Database

In this paper a group of 10 patients from the European
Database on Epilepsy [11] was considered. We selected
patients that were monitored non-invasively (scalp EEG), and
according to some quality conditions, such as the patients
data should have at least for five days and the EEG data
should not present intervals in the recordings (more than
99.5% of effective recording time). Fifteen patients fulfil
these conditions, and 10 were randomly selected. All the
selected patients suffer from temporal epilepsy. Particular
data details are listed in Table II.

B. Methodology overview

The methodology applied is presented in Fig. 1. The 50
Hz power-line interference is removed from the raw EEG
data by applying a notch filter. The filtered EEG signals are
then subjected to feature extraction. Twenty-two univariate
features were extracted per channel. The selected features are
listed in Table I, and were selected based on previous stud-
ies that reported successful seizure prediction performances
using SVM and ANN classifiers, and also because of their
low computational cost, enabling real-time operation [10],
[12]. In this paper all the features were computed using
consecutive five-second windows without overlap.

After feature extraction, six electrodes were selected by
two different strategies. In one, three electrodes that were
over the seizure-onset-zone (SOZ), and three that were not
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Fig. 1. General overview of the employed methodology.

TABLE I
FEATURES THAT ARE POSSIBLE TO EXTRACT FROM RAW DATA

Feature
First Coef. of AR Models

Decorrelation Time
Energy
Entropy

Hjorth Mobility
Complexity

Relative Power

Delta Band (0.1-4 Hz)
Theta Band (4-8 Hz)

Alpha Band (8-15 Hz)
Beta Band (15-30 Hz)

Gamma Band (30-2000 Hz)

Spectral Edge Power
Frequency

Statistics

1st Moment (Mean)
2nd Moment (Variance)
3rd Moment (Skewness)
4th Moment (Kurtosis)

Energy of the Wavelet Several mother Wav.
Coefficients and decomposition levels

related with the SOZ were selected. The other selection ap-
proach aims to maximize the scalp coverage with a reduced
number of electrodes and is based on the discretization of
the international 10-20 system. This selection resulted in the
selection of the electrodes F7, Fz, F8, P7, Pz, P8. After the
identification of the electrodes to be used a set of 132 (6
electrodes × 22 features) features were available as inputs
of the classifiers.

Here we consider cost-sensitive SVM classifiers with
Gaussian kernels that by default have as free parameters
the cost (C) and the spread of the Gaussian kernel (γ).

The portion of data that contained the first three seizures
was used for training, and the remaining data containing
the last seizures were selected for out-of-sample validation.
This strategy simulates a real-time scenario, where just a
first part of the data is known at first place. Each patient
had eight different training sets consisting on four different
preictal periods, or seizure occurrence periods (SOPs), and
two different electrode selection methods. Three classes were
considered: interictal, related with seizure free intervals;
preictal, i.e., the time epochs just before the seizure onsets;
and ictal, related with the seizure episodes. To determine
the best SVMs parameters we used a grid-search. Here we
considered exponentially growing sequences for the SVMs
parameters (C and γ), i.e., C =

{
25, 28, 210, 213, 215

}
and

γ =
{
2−10, 2−5, 23, 25, 210

}
.

Two SVM classifiers were considered, one (SVM1 in Fig.
1) is designed to label feature samples as ictal or non-ictal,
and the other SVM (SVM2) is trained to classify the feature
samples as preictal or non-preictal. This dual classification
solution decomposes a multi-class problem in two binary
problems, enabling the output regularization methodology
implemented in this paper and that is explained next. After
training, the classifiers were evaluated in out-of-sample data.
The SVM1 classifier was designed to distinguish the ictal
samples from the other ones, and acts in this paper as a
decision mechanism. On one hand, if the SVM1 classifies a
sample as ictal then the sample is not a preictal one, and the
outputs of the SVM2 are forced to be as negative as possible,
i.e., to be -1 in both continuous and binary versions. On the
other hand, if SVM1 classify a sample as to be non-ictal,
then the final continuous and binary outputs are the output
of SVM2.

To reduce the number of false alarms the output of SVM2

should be regularized, i.e., should be filtered by taking in
account the past classification dynamics. As presented in
Fig. 1 the KF regularization technique is based on the
continuous SVM2 output, i.e., the signal just before the
standard SVM threshold and that is the distance between
a given input sample in the high dimensional space and the
hyperplane defined. The FP regularization is based on the
binary classification output, i.e., the usual SVMs output.

C. Firing Power regularization
The FP method generates alarms taking into account the

temporal dynamics of the classification output in the testing
set. Considering the continuous output of the classifier, the
first step is to binarize the output yk according to:

ok =

{
1, if yk ≥ 0
0, if yk < 0

(1)

Then, a sliding window with size equal to the preictal
period was settled aiming to quantify the number of samples
classified as preictal according to:

fp[n] =

∑n
k=n−τ ok

τ
(2)

Where fp[n] is the “firing power” at the discrete time n,
τ corresponds to the number of samples considered in each
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window, and ok is the binary output of the classifier. A firing
power of one (a full firing power) means that all the samples
in the past preictal time were classified as preictal, therefore
strongly suggesting a preictal state. The alarms are generated
using the fp[n] values and according to:

a[n] =

{
1, if fp[n] ≥ L
0, if fp[n] < L

(3)

where L is an arbitrary threshold value, which in this work
assumed the values {0.10, 0.15, ..., 0.85} , i.e., a fraction of
the full “firing power”. After an alarm, a new one can only
be raised after the a time equal to the preictal time and if
a[n] crosses the threshold in an ascending way.

D. Kalman Filter regularization

In [6] an alternative approach based on the Kalman Filter
(KF) was used to reduce the number of false positives
obtained using the decision variable, i.e., the real-valued
signal just before the SVM threshold. The KF underlying
idea is the estimation of the states sk of a linear dynamic
system defined by [6]: sk+1 =

[
1 Tp
0 1

]
sk + wk

yk =
[
1 0

]
sk + zk

(4)

where sk is the state of the system at instant k; yk is the
measured variable; wk and zk are zero mean white noise
vectors. Let yk denote the real-valued SVM2 output and
sk = [yk, ẏk] the state vector (ẏk represents the rate of
change of yk). Tp is the prediction interval (we considered
a 5 seconds interval) and wk the process noise. In the same
way as considered in [6], the unique tunable filter parameters
was the standard deviation of the random fluctuations of ẏk,
denoted as σw, and assumed to be equivalent to the Kalman
gain (σKF , σw). In this paper we assumed the values
{10−2, 10−3, 10−4, 10−5} for σw.

An alarm is raised whenever the KF output is classified as
a preictal sample. In the same way as for the FP, a new alarm
can only be raised if the KF output crosses the zero-threshold
in an ascending way.

III. RESULTS

Taking into account the different datasets (originated by
considering different SOP periods and different electrode
selection methods), the grid search considered for SVM
optimization, and the two suggested regularization methods,
the total number of predictors developed for each patient
was 6400. In this paper we evaluate the results based on the
sensibility (SS), i.e., the percentage of predicted seizures, and
based on the number of false predictions per hour, or false
prediction rate (FPR). The best predictors for each patient
and for each regularization method was selected as the one
that presents SS and FPR close to the optimal performance
point, i.e., SS=100% and FPR=0 h−1.

Table II summarizes the best results obtained for each
patient using the two different regularization approaches.

The prediction results using the two regularization meth-
ods produced different results reflecting in general the trade-
off between sensitivity and false positive rates.

The results using KF as a regularization strategy produced
higher sensitivities. In average the sensitivity was 84%, but
with a high false positive rate of 1.51 h−1, in average. In
fact, for some patients (1,2, and 9) the best predictor based in
KF present such a huge number of false predictions that its
usefulness is negligible. The FP regularization yields signif-
icant improvement in the false positive rate, i.e., a reduction
to 0.23 h−1, in average. These results were associated to
a slight decrease in the sensitivity to 77% in average (note
that patient 9 had an important contribution to this decrease).
Three patients presented a sensitivity of 100% with a rate of
false predictions inferior to 0.15/h.

The best models according to our results favored datasets
with longer preictal periods. No particular pattern was found
in the electrode array selection (slightly advantage to the
“1020” selection).

Taking a closer look to the KF approach, it is noticeable
that σw was related to the FPR. The lower is σKF the
smoother is the filtered output, and less false predictions are
raised . More precisely, σKF values higher than 10−5 were
related to FPR>1 h−1.

The threshold associated to the best result obtained with
FP was in general low. Five of the patients analyzed pre-
sented a threshold of 0.1, i.e., 10% of the samples in a
preictal duration window should be classified as preictal to
generate an alarm.

Fig. 2 presents the output regularization by KF (A) and
by the FP (B) in the testing data for one exemplary patient.
It can be noticed that the KF output is more fluctuating than
the FP, rising more false alarms. The rule impose in the FP
method that a new alarm is only possible after a preictal
time also contributes to the decrease of the number of false
alarms.

IV. CONCLUSIONS

We compare two regularization approaches to improve the
seizure prediction performance of predictors based on SVM
classifiers: the Firing Power (FP) and the Kalman Filter (KF)
methods. On one hand, the FP approach presented better
results concerning the false positive rate. On the other hand,
KF produced results with higher sensitivities. However, the
number of false alarms raised by KF makes its applicability
insignificant for some of the analyzed patients. It can be
concluded that the FP approach is more “conservative”
concerning the raising of alarms, because it considers a
longer memory, and because of its particular constraints
(rules) on the times were alarms are possible to be raised.
While FP considers a past window equal to the preictal time,
which can range form 10 minutes to 40 minutes, the KF
approach is based on just the past output sample and on its
derivative (rate of change), i.e., a much more shorter memory
is considered.

Another important issue was the optimization of the pre-
ictal period for each patient. The use of different targets in
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TABLE II
INFORMATION AND RESULTS FOR THE 10 STUDIED PATIENTS. Total Rec. IS THE TOTAL RECORDING TIME IN DAYS HOURS:MINUTES:SECONDS, I.E.,

INCLUDING TRAINING AND TESTING DATA. N. Sz IS THE TOTAL NUMBER OF SEIZURES IN THE TESTING DATA. Testing Dur. IS THE TESTING DATA

DURATION IN HOURS. SS STANDS FOR SENSIBILITY, AND FPR FOR FALSE PREDICTION RATE. El. Sel. FOR ELECTRODE SELECTION METHODOLOGY,
WHERE “ORIG” MEANS THAT THE BEST PREDICTOR WAS BASED ON ELECTRODES SELECTED BASED ON THE SEIZURE ONSET ZONE, AND “1020”

MEANS THAT THE BEST PREDICTOR WAS BASED ON ELECTRODES SELECTED ACCORDING TO THE DISCRETIZED 10-20 METHODOLOGY.

Pat. Total Rec. N. Sz. Testing Dur(h) Kalman Filter Firing Power
SS (%) FPR (1/h) SOP (min) El. Sel. SS (%) FPR (1/h) SOP (min) El. Sel.

1 07 22:40:14 5 106.80 60.00 4.98 40 1020 40.00 0.25 40 1020
2 08 05:03:49 5 42.30 80.00 2.34 20 1020 80.00 0.07 40 1020
3 05 00:15:59 3 69.03 66.67 0.52 40 orig 66.67 0.20 40 1020
4 06 20:47:58 1 43.40 100.00 0.23 40 1020 100.00 0.12 40 orig
5 06 19:05:56 6 108.14 83.33 1.43 40 orig 100.00 0.40 40 1020
6 19 19:41:59 1 29.96 100.00 0.30 20 1020 100.00 0.10 40 1020
7 05 20:49:06 3 40.84 100.00 0.69 30 orig 100.00 0.07 40 orig
8 06 15:20:37 4 77.38 75.00 0.79 40 1020 75.00 0.25 20 1020
9 06 16:20:07 24 134.40 75.00 2.70 40 orig 41.67 0.30 40 orig
10 06 00:01:44 6 99.02 100.00 1.10 40 1020 66.67 0.21 40 1020

Avg. - 5.8 75.13 84.00 1.51 35 - 77.00 0.20 38 -

!"

#"

Fig. 2. Kalman Filter (A) and the Firing Power (FP) outputs. The horizontal
dashed lines represent the considered threshold levels. Vertical green lines
indicate true alarms, while vertical red lines represent false alarms. The
seizure onset is marked by full vertical black bars, and the considered
preictal time by green regions. In (A) the KF output is the dark-blue curve,
while the light-blue curve represents the continuous SVM output. In (B) the
firing power is described by the dark-blue curve.

the training stage of our study indicates that longer preictal
periods may help the classifier to discriminate preictal from
nonpreictal samples.

Future steps will encompass the validation on a larger
number of patients from the EPILEPSIAE database [11] and
the comparison of both regularization methods in a real-time
environment.
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