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Abstract—Traditional physiological monitoring systems con-
vert a person’s vital sign waveforms, such as heart rate, res-
piration rate and blood pressure, into meaningful information
by comparing the instant reading with a preset threshold or a
baseline without considering the contextual information of the
person. It would be beneficial to incorporate the contextual data
such as activity status of the person to the physiological data
in order to obtain a more accurate representation of a person’s
physiological status. In this paper, we proposed an algorithm
based on adaptive Kalman filter that describes the heart rate
response with respect to different activity levels. It is towards
our final goal of intelligent detection of any abnormality in
the person’s vital signs. Experimental results are provided to
demonstrate the feasibility of the algorithm.

I. INTRODUCTION

The recent advancements in sensing technologies, wireless

communication and signal processing have enabled the de-

velopment of telehealth and telemedicine. Ambulatory health

monitoring has been an area of active research. The objective

is to monitor a person’s health status by remotely and contin-

uously measuring various vital signs. Detecting abnormalities

in vital signs before clinical signs are present allows timely

treatment, earlier intervention, and prevention of advanced

problems. How to accurately detect the onset of abnormalities

in vital signs is a challenging problem.

It is becoming more apparent that contextual data captured

along with physiologic data can be beneficial in helping to

assess the health status of a patient. As a representative

example, if a patient is wearing a mobile wireless health

monitor for measuring heart rate and a monitoring system is

looking to triage a range of patients with similar devices, a

challenge will present itself. In one representative challenge an

individual being monitored could in fact perform a strenuous

activity, which will lead to an increased heart rate. When the

heart rate is above a predefined heart rate limit simulating an

adverse health condition, a subsequent false alarm is activated.

Normally the goal of looking at a heart rate in a triage

application is to look for measurement outside the normative.

Physical activity is one way to increase this level and is not

necessarily an indicator of a potential dangerous condition.

Thus, it is necessary to incorporate contextual information

such as activity level in order to reduce the false alarm of

such physiological monitoring system.

Many studies have attempted to explore the relationship

between physical activity and health status. The use of mo-

tion data to provide context of the subject for physiological

monitoring has been used in different applications such as

assessment of energy expenditure[1], [2], computer-controlled

treadmill system [3] and cardiac disease predictor. Heart rate

is an important measurement related to a person’s cardiac

health status. Different linear and nonlinear models have been

proposed to study and model the cardiac response during

different type of activities [4], [5], [6], [7]. All these studies

require a significant amount of training data to develop a

model with fixed parameters to describe the heart rate function.

In practice, it could work for a specific scenario. For example,

in treadmill application, it is possible to use a fixed model to

relate heart rate response with the running speed. However,

the model has to be trained first for each individual and for

each activity. A single model will not work for long term

monitoring application, in which different type of activities

could happen. That is to say, the model that is used for

treadmill application can not be applied to resting scenario.

Thus, long term monitoring application requires either multiple

models corresponding to different activities or the model be

adaptive. Thus, we have proposed to use an adaptive linear

model to relate heart rate response with respect to the activity

level. The advantage of it is that it does not require any training

data and it avoids the classification step before triggering any

model.

II. DATA COLLECTION AND PROCESSING

Most heart rate monitors in the market can only be used

when the subject is at rest and gives motion artifact when the

subject is moving. We chose a Garmin belt containing ECG

electrodes to collect heart rate data continuously because this

Garmin heart rate monitor is designed for fitness application

and can measure the heart rate accurately when the subject is

moving. The sampling rate of the heart rate monitor is 0.2HZ.

Due to the advantage of small power consumption and small

size, we used an accelerometer as a tool to measure activity

level for our application. A Freescale triaxis accelerometer

mounted in custom made casing is attached to the chest to

measure the acceleration of the body. The accelerometer is

positioned such that the sensor plane is parallel to the torso

and Y axis is along the gravity line when the subject stand

upright. The sampling rate of accelerometer sensor is 30 HZ.

It is not necessary to process all the three axes of acceler-

ation. Therefore, The Z axis of the acceleration data, which
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Fig. 1. Example of heart rate data and activity level data (red: sitting; blue:
walking; green: running

represent the acceleration of the subject moving forward, is

used to calculate the activity status of the subject. As one

sample of heart rate data corresponds to 150 samples of

acceleration data, we calculate the standard deviation of 150

samples from the acceleration data to measure the activity level

over a time window of one second. This activity level provides

an estimate of the average energy the person spent over a short

period of time.

Figure 1 displays one example of the heart rate data and

corresponding acceleration data from one subject performing

different levels of activities. From the two plots, it is observed

that the heart rate signal is highly correlated with the activity

level. When the subject started running, the heart rate of the

subject increased immediately. When the subject was walking

after running, the heart rate decreased gradually and remained

quite stable when the subject finally sat. In addition, we also

observed that the behavior of heart rate signal varied when

walking at different time. When the subject walked right after

a long run, a dramatic decrease in heart rate was observed

while the heart rate decreased slowly when the subject walked

after a short run. It implies that even for the same activity, it

is difficult to characterize the heart rate response using a fixed

model.

III. ADAPTIVE KALMAN FILTERING ALGORITHM FOR

ABNORMAL HEART RATE DETECTOR

A. Problem Formulation

The basic idea is to use history of the heart rate and activity

level measured by acceleration data to predict the future heart

rate. When the new measurement of heart rate is received, it

will be compared with the predicted heart rate. The prediction

error will stay within tolerance if the system converges and the

person is healthy. If the subject has a sudden adverse health

condition resulting in abnormal heart rate change, the system is

not able to predict the heart rate accurately and the prediction

error will be quite large. Thus, the onset of adverse health

event is detected by comparing the instant prediction error

of the subject’s heart rate with a predetermined or adaptive

threshold.

The first important step is to build a model that can describe

the relationship between the future heart rate and the history

of heart rate together with activity level. The heart rate data

is calculated from ECG signals coming from electrodes in

the Garmin belt. The ECG signals’ quality degrades espe-

cially when the subject is not in stationary condition as

various types of noise such that that due to sweating, muscle

movement or electrode movement are in coupled in dynamic

environment. Some of the signal-to-noise ratio (SNR) and

artifact problems that arise during these recordings can be

suppressed by simple, frequency-selective filtering techniques

[8]. However, due to the partial overlap of signal and noise

bandwidths, this frequency-selective filtering can only help

to some extent [8]. Also, simple filtering techniques such

as median filtering and low pass filtering could suppress the

physiological dynamics of the ECG signals, and therefore,

failed to detect the physiologically relevant changes. Hence,

we developed an adaptive Kalman filter to dynamically detect

unanticipated physiological abnormality.

B. Kalman Filter Model

We consider that the heart rate signal is a random process

and attempts to predict the future signal based on the previous

signals. Under such assumption, the heart rate signal xn at the

time stamp tn is modeled by a pth autoregressive process with

exogenous term (ARX), which is given by

xn = a1xn−1 + ...+ apxn−p + bun + wn (1)

where, ai and b are the coefficient parameter in the model, the

exogenous term un is the acceleration signal that provides the

contextual information of the subject and wn is the process

noise which is assumed to have multivariate Gaussian noise

with zero mean and covariance Q.

As the heart rate signal is corrupted to some extent by

noise and artifacts, we model the denoised consecutive heart

rate signal as the state of Kalman filter. In a simplified form,

both the relationship between consecutive heart rate readings

and collected heart rate signal contaminated by noise can be

described by a state-space model, which are written by,

Xn = An−1Xn−1 +Bn−1un + Cwn

yn = HXn + vn
(2)

where, Xn−1 = [xn−1 ... xn−p]
T

represents the system state

at time n− 1;

An−1 =


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represents the

state transition matrix updated at time n−1 that describes the

evolution of state over time;
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Bn−1 =
[

bn−1 0 ... 0
]T

is the control vector updated

at time n − 1 that represents the contribution of input signal

un to the state;

C =
[

1 0 ... 0
]T

is the coefficient that is applied to

process noise;

H =
[

1 0 ... 0
]

is the observation model that maps the

system state to the measured signal;

vn is the measurement noise which is assumed to be

Gaussian distributed with zero mean and variance R.

These state-space models describe a linear dynamic system

from the measured heart rate signal and can be used to predict

future heart rate and refine the estimation by the Kalman filter

theory. According to the well-known Kalman filter theory [9],

the prediction step for state estimate and covariance matrix of

state estimate error is given by,

X̂n|n−1 = An−1Xn−1|n−1 +Bn−1un

Pn|n−1 = An−1Pn−1|n−1A
T
n−1

+ CQCT (3)

With the new measured signal yn, the updated state estimate

is given by

X̂n|n = X̂n|n−1 +Kn

(

yn −HX̂n|n−1

)

(4)

where, Kn is the Kalman gain given by,

Kn = Pn|n−1H
T
(

HPn|n−1H
T +R

)−1

(5)

The updated covariance matrix of state estimate error is

calculated as,

Pn|n =
(

I −KnHPn|n−1

)

(6)

The prediction error of heart rate signal at time n is

Prn = X̂n|n − X̂n|n−1 = Kn

(

yn −HX̂n|n−1

)

. (7)

Thus, if the prediction error is larger than a baseline, it

implies that the ARX model is not well fitted in the heart rate

data and therefore, an event of abnormality is detected and an

abnormal alarm is triggered.

C. Adaptive ARX model update

In the traditional Kalman filter state model, the ARX

parameters an and bn are fixed. As the ARX model illustrates

the changes of heart rate corresponding to different activity

level, it is not possible to use a single model to describe

such phenomenon during the whole stage of activities. For

example, the change of heart rate when someone rests im-

mediately after a long run is different from the change of

heart rate when someone rests for a while. In addition, such

relationship usually changes gradually in normal case. Thus,

we build the ARX model adaptively by updating the model

gradually during the different stage of activities. The structure

of adaptive Kalman filter is illustrated in Fig. 2. The enhanced

signal at the output of Kalman filter is fed to the adaptive

filtering subsystem to update the ARX model parameters. At

the beginning, the noisy signal is used for ARX parameter

estimation. After the system converges, the denoised signal is

used to update the ARX model. The ARX model is updated

Fig. 2. Block Diagram of Adaptive Kalman Filtering System

on a per sample basis using a recursive least squares algorithm

[10].

The whole procedure is described as follows,

1) Predict the state (denoised heart rate signal) X̂n|n−1 and

its covariance Pn|n−1 using Eq. 3

2) With the new measurement Yn, calculate Kalman gain

Kn using Eq. 7

3) Calculate prediction error Prn using Eq. 7

4) Update the state and covariance matrix using Eq. 4 and

6

5) With the updated state, update the ARX model an and

bn.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this experiment, to evaluate our proposed algorithm,

we also implemented adaptive filter based algorithm and

ARX algorithm with fixed parameters. Different from our

proposed algorithm in which we create ARX model using

the denoised heart rate (states in Kalman filter), adaptive filter

based algorithm adaptively updates the ARX parameters using

the measured heart rate data. In the ARX algorithm with fixed

parameters, we used half of data as training data to build

the ARX model and the other half of data as testing data

to evaluate the model performance.

We have collected data from the accelerometer sensor and

heart rate monitor from three healthy subjects aging from 20

to 30. Each subject is asked to perform three tasks during

20 minutes, sitting, running at different speeds, and walking.

Three algorithms are implemented.

Figure 3 shows the raw heart rate data, denoised heart

rate data by Kalman filtering, predicted heart rate using our

proposed algorithm (adaptive Kalman filter), predicted heart

rate using adaptive filter based algorithm and predicted heart

rate using fixed ARX model based algorithm. Figure 3(a)

displays the result of the complete data set and (b) and (c)

display the zoomed-in view of two areas. In the first area, the

subject started running from sitting and a dramatic increase of

heart rate is observed. In the second area, the subject sat for a

short time during a run and a transition between a decrease of

heart rate and an increase of heart rate is observed. Compared

with adaptive filter based algorithm and fixed ARX based

algorithm, which produces relatively larger error, our proposed
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(a) Complete data

(b) Zoomed-in view of area 1

(c) Zoomed-in view of area 2

Fig. 3. Predicted, denoised and raw heart rate data ( (a) shows the results
of the complete data; (b) and (c) are the zoomed-in view of area 1 and 2.)

algorithm can predict the heart rate closer to the measured and

denoised heart rate. In particular, our proposed algorithm can

adapt the model when the subject changes his physical activity

status, and therefore, can be suitable for the application of long

term monitoring.

Figure 4 shows the prediction error of three algorithms

using the data from one subject. It is observed that our

proposed algorithm produces smaller error than the other two

algorithms throughout the experiment. The root mean square

error (RMSE) of predicted heart rate during the complete 20

minutes is calculated for all the three algorithms and shown in

Table I. Our proposed algorithm produced the smallest error on

the data from all the three subjects. The prediction error can be

caused by several reasons. First, it is based on the model that

the future heart rate is a linear function of historical heart rate.

The model fitting error is the major cause for the prediction

error. Second, the measured heart rate contains non-Gaussian

noise from ECG device due to power-line interference and

electrode contact, which also leads to the prediction error. We

assume that the amount of such prediction error under normal

condition is much smaller than the error caused by a sudden

adverse event such as heart attack, which is to be validated in

our future experiments using data from patients with cardiac

diseases.

Fig. 4. Prediction error of three algorithms

TABLE I
RMSE OF PREDICTION ERROR OF THREE ALGORITHMS

Suject 1 2 3

Adaptive Kalman Filter 2.72 3.17 1.47

Adaptive Filter 3.55 3.58 1.70

Fixed ARX model 4.07 3.95 1.90

V. CONCLUSIONS

In this paper, we proposed an adaptive Kalman filter based

algorithm to predict the heart rate signal with the acceleration

data and the history of heart rate. Our proposed algorithm

builds an ARX model of heart rate response with adaptive

parameters that could be used in different activity contexts

without any training data. Experimental results have demon-

strated that the use of an adaptive model provides a better

description than the model with fixed parameters. In particular,

our proposed algorithm works better during the transition stage

when the subject changes their activities.
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