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Abstract— Dynamic joint stiffness defines the dynamic re-
lationship between the position of a joint and the torque
acting about it and can be separated into intrinsic and reflex
components. Under stationary conditions, these can be identi-
fied using a nonlinear parallel-cascade algorithm that models
intrinsic stiffness and reflex stiffness as parallel pathways.
Experimental results demonstrate that both intrinsic and reflex
stiffness depend strongly on the operating point defined by
mean joint position and the activation level. Consequently,
both intrinsic and reflex stiffness will appear to be time-
varying (TV) whenever the operating point changes, as during
movement. This paper describes and validates a new method
for identification of TV ankle stiffness. The method is based
on the TV nonlinear autorregresive, moving average exogenous
(NARMAX) model class. Simulation results demonstrated that
the algorithm can accurately estimate the TV parameters of the
ankle stiffness. We conclude that the algorithm is potentially
a powerful new tool for the study of joint stiffness during TV
conditions.

I. INTRODUCTION

Joint stiffness can be defined as the dynamic relationship

between the angular position of a joint and the torque acting

bout it [1]. Therefore, it plays a vital role in the control of

posture, where it defines the response of the joint to external

perturbations; it is also important in movement control, since

it is the torque generated by the muscle that controls the final

position of the joint.

At the ankle, dynamic joint stiffness is composed of two

components that can be described by the parallel cascade

model shown in Fig. 1 [2]. Intrinsic stiffness is generated

by the viscoelastic properties of the joint, passive tissue, and

active muscle fibres. For small perturbations about a fixed

operating point, it can be described as a second order linear

system. Reflex stiffness is generated by the active muscle

contraction in response to reflex activation from stretch

receptors in the muscle. At the ankle, it can be modelled

as a linear-nonlinear-linear (NLN) block structured model,

comprising a series connection of a delay, a differentiator, a

static nonlinearity and a second order low-pass system.

Intrinsic and reflex torques cannot be measured separately

experimentally; only their sum can be measured. Conse-

quently, intrinsic and reflex stiffness cannot be estimated

separately. To overcome this, our laboratory has developed

several system identification methods to separate the intrinsic

and reflex torques analytically under stationary conditions

[2], [3]. Using these methods we have shown that joint

stiffness is highly dependent on joint position and torque
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Fig. 1. Ankle stiffness model

[4]; this will result in large changes in intrinsic and re-

flex stiffness during movement. Thus, a time-variant (TV)

identification method is needed to fully understand the time

course of changes in stiffness when the angular position

of the joint and/or the torque vary with time. Recently,

an ensemble-based TV ankle stiffness identification method

was developed in our laboratory [5]. One drawback of this

method is that it requires a large ensemble of input-output

data in which each realization undergoes the same time-

varying behaviour. Acquiring such as ensemble of responses

is not always feasible with experimental subjects and it can

be difficult to ensure that each trial is performed in the same

way.

This paper introduces a new TV ankle stiffness identification

method, based on a temporal expansion of the unknown

TV-coefficients of a TV-NARMAX (nonlinear autoregressive

moving average with exogenous inputs) model [6] derived

from the parallel cascade structure shown in Fig. 1. This

method is different to previously presented algorithms in that

requires only one realization of the input-output data.

The organization of this paper is as follows. The NARMAX

representation of the ankle stiffness and the TV extension

are presented in Section II. Section III introduces a new

algorithm for the identification of TV ankle stiffness. In

Section IV we present the parameters used in the simulations

and describe how we evaluate the accuracy of the identified

models. Section V presents the results of identifying TV

ankle stiffness and finally, Section VI provides some con-

cluding remarks.

II. NARMAX REPRESENTATION

The input/output relationship of many nonlinear dynamic

systems can be modelled as a NARMAX system [7]:

y(n) =F l [y(n− 1), . . . , y(n− ny), u(n), u(n− 1), . . . ,

u(n− nu), e(n− 1), . . . , e(n− ne)] + e(n),
(1)

where F l is a nonlinear mapping, u(n) is the controlled

(i.e., exogenous) input, y(n) is the output and e(n) is the

uncontrolled input.
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A. Ankle stiffness NARMAX representation

Kukreja [3] showed that the continuous time parallel

cascade ankle stiffness model can be transformed into a

NARMAX representation by means of the following approx-

imations:

• For system elements with no poles (i.e., the intrinsic

path and the derivative), the Laplace variable s is trans-

formed to the discrete time through Euler’s backward

formula:

s =
1− z−1

T
, (2)

where T is the sampling time.

• For elements with poles (i.e., the dynamic part of

the reflex path), s is transformed to the discrete time

through the bilinear transformation:

s =
2

T

(

1− z−1

1 + z−1

)

. (3)

• The continuous time delay (∆) can be converted to

discrete-time as:

τ =

⌈

∆

T

⌉

. (4)

• The half-wave rectifier, in the continuous model, can be

approximated by a second order static polynomial

c0 + c1x(n) + c2x
2(n). (5)

Additionally we considered the model output to be cor-

rupted by additive noise

y(n) = ω(n) + e(n), (6)

where ω(n) is the unmeasured noise free output, e(n) is

white zero mean noise and y(n) is the measured output.

After applying all the approximations, the nonlinear model

can be represented by [3]:

y(n) =φ1y(n− 1) + φ2y(n− 2) + φ3u(n) + φ4u(n− 1)

+ φ5u(n− 2) + φ6u(n− 3) + φ7u(n− 4)

+ φ8γ(n)− φ1e(n− 1)− φ2e(n− 2) + e(n),
(7)

where

γ(n) = 4c0 +
c1

T
[u(n− τ) + u(n− 1− τ)− u(n− 2− τ)

−u(n− 3− τ)] +
c2

T 2

[

u2(n− τ) + 3u2(n− 1− τ)

+3u2(n− 2− τ) + u2(n− 3− τ)

−2u(n− τ)u(n− 1− τ)

−4u(n− 1− τ)u(n− 2− τ)

−2u(n− 2− τ)u(n− 3− τ)] .
(8)

The relationship between the coefficients φi and the parame-

ters of the original model were developed in [3]; the inverse

relations are given by:

B = T

(

2
φ7

φ2
− φ4 − φ1φ3

)

, (9)

I = −T 2φ7

φ2
, (10)

K = φ3 (φ1 + 1) + φ4 −
φ7

φ2
, (11)

ω2
n =

4

T 2

(

−φ1 − φ2 + 1

φ1 − φ2 + 1

)

, (12)

ς =
φ1 + 1

√

−φ1 + (φ2 − 1)2
, (13)

gr = 4

(

φ8

−φ1 − φ2 + 1

)

. (14)

Thus, identifying the coefficients φi, i = 1, . . . , 8 in (7)

achieves the identification of the continuous-time model

parameters.

B. TV extension

Is possible to create a TV-NARMAX representation of

the ankle stiffness model by making the coefficients in (7)

functions of the discrete time

y(n) = φ1(n)y(n− 1) + φ2(n)y(n− 2) + φ3(n)u(n)

+ φ4(n)u(n− 1) + φ5(n)u(n− 2) + φ6(n)u(n− 3)

+ φ7(n)u(n− 4) + φ8(n)γ(n)− φ1(n)e(n− 1)

− φ2(n)e(n− 2) + e(n).
(15)

Basically there are two ways of identifying this kind of

system. One approach would be to acquire a large ensem-

ble of input output realizations and then use an ensemble

identification method (e.g., [8]) to estimate the parameters

as a function of time. Here we consider the other possibility

which is to express the time-varying coefficients φi(n) as a

function of some (known) basis functions [6]:

φi(n) =

Mi
∑

k=0

αikπk(n), (16)

where αik are some coefficients independent of time. Insert-

ing (16) in (15) gives a time-invariant (TIV) approximation

of the TV equations:

y(n) =

2
∑

i=1

Mi
∑

k=0

αikπk(n)y(n− i)

+

3
∑

i=0

Mi
∑

k=0

αikπk(n)(n)u(n− i)

+

M8
∑

k=0

α8kπk(n)γ(n)

+ w1e(n− 1) + w2e(n− 2) + e(n).

(17)

Note that for simplicity we will assume that the parameters

of the uncontrolled input are time-invariant.

III. TV SYSTEM IDENTIFICATION

Given the controlled input (u(n)), the output (y(n)), the

basis functions (πik(n)) and the uncontrolled input (e(n)) it

is possible to estimate the coefficients αik in (17) using a
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least square approach. Unfortunately the problem in this case

is not straightforward because we do not have access to e(n).
In addition, the maximum number of basis functions needed

to correctly represent the different time-varying coefficients

is not known. Given these problems we propose the following

algorithm for TV ankle stiffness identification:

1) Assume for the moment that Mi = M , i = 1, . . . , 8.

Where M is an arbitrarily large number of basis

functions (e.g., 15 or 20).

2) Treat the system as if there were no uncontrolled input.

3) Estimate the parameters of the model, Θ̂, by solving

the equation

y = ΦΘ. (18)

To increase the accuracy of the estimation is better to

avoid any matrix inversion, therefore a method such as

Ortogonal Least Squares (OLS) is recomended [7] (in

this case we used an algorithm termed Fast Recursive

Algorithm [FRA], which is faster and more stable than

OLS [9]).

4) Use the estimated parameters Θ̂ to compute the 1-step

prediction as

ŷ = ΦΘ̂, (19)

estimate the residuals

ê = y − ŷ. (20)

and their variance

σ2 =
1

N
ê
T

ê,

where ê
T

is the transpose of the column vector and N

is the number of elements.

5) Treat the residuals as the uncontrolled input, and

then go to 3. Keep iterating until the variance of the

residuals fails to decrease.

6) Calculate the cost function for each parameter (δαik),

which measures the contribution of that parameter to

the variance of the observed signal accounted for the

model (see [7] and [9] for information on the cost

function and how to compute it). Organize the cost

functions according to






δα11 · · · δαi1 · · · δα81

...
...

...

δα1M · · · δαiM · · · δα8M






. (21)

And normalize each column by its largest element.

7) Define a threshold to determine which basis functions

are most relevant (in all our simulations a threshold

equal to 0.001 gave excellent results).

8) Next, for each index i, i = 1 . . . , 8, select only the

relevant basis functions πk (i.e., the basis functions

associated with cost functions larger that the selected

threshold).

9) Go to 2, but this time use only the selected basis

functions. The process ends when the variance of the

residuals fails to decrease.

IV. SIMULATIONS

A TV model of ankle stiffness (Fig. 1) was simulated

using Simulink (The Mathworks, Inc.) for 60 s. Theoretically

all the parameters could be TV but in this study only

K (elasticity) and gr (reflex gain) were varied with time,

because previous studies demonstrated that these parameters

varied most with changes in position and/or activation level

[4]. In this experiment the initial values of K and gr were

chosen from a uniform random distribution, between 50 and

130 Nm/rad for K and 0.5 and 20 Nm/rad/s for gr. These

values were held constant for 7.5 s. New values were selected

every 7.5 s so K and gr had 8 different values.

The input signal was a white Gaussian noise with zero mean,

maximum amplitude of ±0.04 rad and filtered by a second

order low pass filter with cut off frequency of 30 Hz to

represent the low-pass properties of the ankle actuator used

in our laboratory.

Additionally, white Gaussian noise was added to the noise

free output to simulate measurement noise; in this experiment

the standard deviation of the noise was selected such that

the Signal to Noise Ratio (SNR) was equal to 20 dB, a SNR

lower than the expected in real experiments [5].

As the input had power up to 30 Hz and the nonlinearity was

of second-order, we expect frequencies up to 60 Hz in the

output. Therefore, the sampling frequency was selected as

200 Hz (actually the input had power at frequencies larger

than 30 Hz, that is why we choose a sampling frequency

3.3 times larger than the highest expected frequency). Fig.

2. shows input-output signals for a typical simulation run

(all the parameters, except K , gr and the second-order

polynomial, were the same as in [3]). Note that the mean

value of the position (given by the thick red line) is constant

and centred at zero, while the mean value of the observed

torque varies with time as a result of the changes in reflex

gain and the intrinsic elasticity.

In all simulations the position input was between ±0.04
rad and the operating range of velocity was between ±10
rad/s. The coefficients of the second-order polynomial were

selected as the best fit (in the least square sense) to a half-

wave rectifier whose domain is between −10 and +10 and

co-domain between 0 and +10. If the range of the input

(and of velocity) were to change then the coefficients of the

second-order polynomial would have to be modified as well.
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Fig. 2. Top - Input position. Bottom - Simulated torque. Red line is the
mean value calculated over 100 data points.
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A. Model validation

To determine the accuracy of the model, the identified

NARMAX model output (ŷ(n)) was compared with the

noise-free output of the continuous-time simulation (y(n)) by

computing the percent of variance accounted for (%V AF )

as

%V AF =

(

1−

∑N

n=1 (y(n)− ŷ(n))
2

∑N

n=1 (y(n))
2

)

× 100. (22)

V. RESULTS

A. TIV NARMAX model

When modelling TV systems it is important to determine

whether a time-invariant model is needed. To do so a TIV

NARMAX model was estimated from the input-output data

of Fig. 2 by using only one basis function that was time-

invariant (i.e., a constant term). After estimating the model

parameters we performed a free-run of the model without

noise (contrary to the 1-step prediction used in the iden-

tification step) with the same input used for identification.

The predicted TIV torque did not have the time-dependent

properties of the original (observed) torque. Moreover, the

%V AF was less than 60 % confirming that a TV model

was needed.

B. TV NARMAX model

We then performed a TV NARMAX identification using

a basis set consisting of Walsh functions from order 0 to

15, which are well suited to represent piecewise constant

functions [10]. After performing the best basis selection, we

ended up using from 1 to 13 basis functions to represent each

coefficient. Fig. 3. shows how the parameters K (elasticity)

and gr (reflex gain) used in the simulation (black line)

changed with time. The parameters estimated by the new

identification procedure are superimposed on the original

ones (red dotted line).The estimated parameters followed

the original parameters very closely, showing only small

discrepancies at the sharp transitions. Note that the other

identified parameters (i.e., Î , B̂, ς̂ and ω̂n) were also found

to vary with time, but they showed only small variations

around a fixed point that was near the true value.

After identifying the model we conducted a free-run of the

TV NARMAX model using the same input as the used for

identification, in this opportunity we obtained 98.91%VAF .

Next, we performed cross-validation, using a new input (with

the same characteristics), but driving the TV NARMAX
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Fig. 3. Simulated (black line) and identified (dotted red line) parameters
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Cross validation, %VAF = 98.6955
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Fig. 4. Position and torque. Simulated (black line) and identified (red line)

model with the parameters identified before. Fig. 4. shows the

input (upper panel) and output ( lower panel, black line) of

the continuous-time system along with the output of the TV

NARMAX model (lower panel, red line), as observed, there

is almost no difference between the output of the continuous

and discrete-time models (98.69%VAF )

VI. CONCLUSIONS

We have presented a new TV ankle stiffness identifica-

tion method which takes advantage of the fact that a TV-

NARMAX model can be approximated by a TIV-NARMAX

model by using a set of basis functions to represent the

TV parameters. We have also developed a method that uses

OLS (or in this case FRA, a modified version of OLS) to

select the most relevant basis functions. This prevents over-

parametrizing the model and should make the identification

more robust. Simulations showed that the proposed method is

able to correctly identify the time course of the parameters

even when the output is contaminated by noise. The new

method shows great promise for use as a tool to examine the

time-varying properties of joint stiffness. Another important

aspect of the method is that as the uncontrolled input is

modelled during the identification procedure, is not necessary

to make any assumptions about the nature of noise.
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