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Abstract— A myoelectric control system extracts information
from electromyographic (EMG) signals and uses it to control
different types of prostheses, so that people who suffered
traumatisms, paralysis or amputations can use them to execute
common movements. Recent research shows that the addition of
a tuning stage, using the individual component analysis (iPCA),
results in improved classification performance. We propose and
evaluate a set of novel configurations for the iPCA tuning,
based on a biologically inspired optimization procedure, the
artificial bee colony algorithm. This procedure is implemented
and tested using two different cost functions, the traditional
classification error and the proposed correlation factor, which
involves lower computational effort. We compare the tuned
system’s performance, in terms of correct classifications, to that
of a system tuned using two standard algorithms, the sequential
forward selection and the sequential floating forward selection.
The statistical analyses of the results don’t find a significant
difference among the classification performances associated
with the search algorithms (p < 0.01). On the other hand,
they establish a significant difference among the classification
performances related to the cost functions (p < 0.02).

I. INTRODUCTION

The human hand is a very complex system, with a large
number of degrees of freedom, sensors embedded in its struc-
ture, actuators and tendons, and a complex hierarchical control
[1]. Its loss causes severe physical restrictions and psycho-
logical problems [2]. A current technological aid in response
to upper limb amputation and deficiency is the myoelectric
hand prosthesis. This device increases the range of motion and
improves overall function of the upper limb in people with hand
amputation.

Myoelectric hand prostheses are governed by a myoelectric
control system, whose main task is to classify electromio-
graphic patterns into movement classes. The control strategy
widely uses the pattern-recognition approach. In this case the
conventional architecture is composed of three stages: (a) fea-
ture extraction, (b) dimensionality reduction and (c) classifica-
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tion. In this context, the classification error is the most widely
used performance indicator.

The conventional myoelectric control architecture has
reached different classification errors, depending on the num-
ber of classes and other factors. For instance, in [3] an error
of 7.4% is reported in a problem with 7 movement classes
and 8 electromyography (EMG) signals channels. Recently, a
new strategy has been proposed in which the temporal-spatial
information, contained within muscle crosstalk, may implicitly
add class discriminatory information to the classification prob-
lem [4]. This proposal has been investigated by Hargrove [5]
observing a significative reduction in the classification error. In
a problem with 7 movement classes and 6 EMG channels the
system yielded a classification error of 1.9%.

The proposal in [5] mixes 3 components: (a) a high crosstalk
level EMG acquisition system, (b) an iPCA (individual PCA)
transformation stage and (c) the conventional myoelectric con-
trol system. The main disadvantage of the iPCA projection
is the dimensionality increment of the electromyographic pat-
terns, in which the pattern dimension is incremented by a factor
corresponding to the control system’s number of classes.

To deal with the dimensionality problem it is possible to
execute a reduced iPCA transformation that generates just the
most discriminative dimensions instead of the complete set.
This solution is used in [5] and requires an optimization pro-
cess, which is conducted during a configuration stage, before
the classification tasks.

The results in [5] were computed with a combination of the
sequential forward selection (SFS) algorithm and the classifica-
tion error cost function. Despite important reported advantages,
there are also some disadvantages. The SFS algorithm presents
the nesting effect, i.e., once a channel has been selected there
is no possibility of discarding it [6]. Also, the SFS algorithm
does not use random components [7]; note that this type of
components can help finding different solutions and hence
potentially lead to better ones [8] in problems with more than
one local optimum. Furthermore, the use of the classification
error as the cost function requires a supervised procedure, in
which the classes associated to each pattern are known, and is
computationally expensive, due to the need for evaluating the
classifier’s output at each iteration.

Therefore, it is important to investigate iPCA tuning al-
ternatives taking into account that: (a) the sequential floating
forward selection (SFFS) algorithm treats the nesting effect
problem, conserving the most of the advantages of the SFS
algorithm [7]; (b) the bio-inspired algorithms include random
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components in their search strategies, allowing the optimiza-
tion problems to be effectively tackled [9], [10]; and (c)
the discriminative information of the EMG input patterns is
inversely proportional to the redundancy level of the input
signals; therefore, it is possible to use a correlation factor as a
cost function in the optimization problem. Some properties of
this selection are the following: (i) not supervised cost function,
and (ii) relatively low computational complexity.

This paper analyzes the effects of two cost functions and dif-
ferent search algorithms on myoelectric control systems with
iPCA tuning. The study is motivated by the fact that we didn’t
find in the literature studies on the effects of the mentioned
disadvantages over the myoelectric control system. Our work
focuses on the classification performance, considering two
types of cost functions (supervised and non-supervised) and
a bio-inspired search algorithm, compared to two sequential
algorithms. Specifically, the cost functions considered here are
the classification error and the correlation factor. The tested
search algorithms are the SFS, the SFFS and the artificial bee
colony (ABC), for a total of six treatment alternatives.

II. BACKGROUND

A. Principal Components Analysis

PCA is an orthogonal linear transformation used to trans-
form a set of observations of possibly correlated variables into
a set of values of uncorrelated variables, called as principal
components. Given M observations of an N dimensional ran-
dom vector z, the PCA transformation is performed by firstly
subtracting the mean of the vector from z [5], x = z − E{z},
computing the N ×N covariance matrix Cx = E{xxT } and
then applying s =Wx, where s is the vector of principal
component and W is the matrix in which each column is an
eigenvector ofCx. Usually theM observations would typically
be samples taken from any one of C possible classes. This
is termed universal PCA (uPCA) or global PCA [11]. This
property, of ignoring class information, permits for arguing that
PCA is suboptimal for classification purposes [12].

A recent variation, called individual PCA (iPCA) [12], [11],
groups theM observations by their class membership. Separate
projection matricesW1, ...,WC with sizeN ×N are found for
each class (see Fig. 1). This set of matrices can be interpreted as
a unique CN ×N size transformation matrix WiPCA formed
by rows concatenation of the separate projection matrices. The
iPCA method effectively “tunes” the data prior to classification
and has been shown to improve classification accuracies for
some pattern recognition problems [13]. Its main drawback is
the linear increment of the dimensionality of the patterns with
the number of classes C. To overcome this problem, a reduced
iPCA transformation matrixWR is defined in [5]. This solution
uses a transformation matrix with the best N1 bases of the
WiPCA matrix (N1 < CN ).

B. Channel Optimization

The optimization task of finding a subset of N1 elements
from a given set of CN channels can be interpreted as a dis-
crete optimization problem (integer elements from the selected
subset). The optimization scheme in Fig. 1 is used to execute
this task. In this scheme a validation data set xv is projected

with the WiPCA matrix. The projected pattern s is a CN ×M
size vector. The vector O′ is a subset of the CN dimensions
in s and its components change at each iteration, following
a specific strategy defined by the search algorithm. The cost
function evaluates the quality of an EMG pattern with regard to
the discriminative information. The evaluated patterns by the
cost function are conformed by the rows of s which form the
O′ vector. When the stop conditions are reached, the scheme
provides as output the selected channel subset O.

C. Search Algorithms

Sequential Forward Selection (SFS): this is one of the first
developed search methods in the literature related to feature
selection. The search procedure consists of the following steps:
(a) compute the cost function for each of the CN channels
and then select the channel with the best value, (b) form all
possible two dimensional vectors that contain the winner from
the previous step and compute the fitness for each of them,
(c) select the vector with the best value, (d) continue the
process until the N1 vector length has been founded. The main
drawback of this algorithm is the nesting effect: once a channel
has been selected, it will never be discarded [7].

Sequential floating forward selection (SFFS): this is a sub-
optimal search algorithm proposed by Pudil et. al in 1994 [6]
for eliminating the nesting effects of the SFS algorithm. This
algorithm begins the search with an initial subset of 2 channels.
For each subsequent iteration 2 processes are solved: (a) search
the candidate channel which minimizes the cost function and
add it to the selected subset O′, (b) verify if the cost function
can be optimized replacing a channel from the selected subset
O′. Consequently, the SFFS search is executed dynamically,
incrementing and decrementing the selected channels in the
subset O′ until reach the target length N1. An efficient way
to implement this algorithm is presented in [14], [6].

Artificial Bee Colony (ABC): this is an optimization tech-
nique proposed in 2005 by Karaboga [15]. In ABC each
solution to the optimization problem is called food source
and is represented by a N1-dimensional vector. The colony of
artificial bees contains three groups of bees: employed bees,
onlookers and scouts. The first half of the colony consists of
employed artificial bees and the second half are the onlook-
ers. For each food source there is only one employed bee.
Therefore, the number of employed bees equals the number
of food sources. An employed bee whose food source has
been exhausted becomes a scout. The ABC algorithm can be
executed in two steps [10]:
• Initialization step: the algorithm generates a random initial
solution set of length S. Each solution xi(i = 1, 2..., S) is
a N1-dimensional vector. The employed bees measures the
nectar amount of each solution, return to the hive and share
the nectar information with the onlooker bees.
• Iterative step: the solution set is submitted to repetitive search
cycles. During these cycles the bees change their memory
contents, searching the source foods with the best fitness. Each
bee is able to remember just one source food location xi. Each
cycle is executed in three phases: (a) employed phase – at this
phase each employed look for a new food source vi around its
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current position xi using

vij = xij + φij(xij − xkj), (1)

where k ∈ (1, 2, ...S) and j ∈ (1, 2, ...N1) are randomly
chosen indexes, with k 6= i and φij is a random number in
the range [−1, 1] that controls the production of food source
positions around xi.

Following, if the nectar quantity of this new position im-
proves the previous one then the bee position is updated. Once
each employed bee has finished this phase, a probability factor
pi is computed using

pi =
f(xi)∑S

n=1 f(xn)
, (2)

where f(.) is the fitness value function and S is the number of
food sources.
(b) Onlooker phase – at this phase the onlooker bees uses the
probability factor pi of each employed bee and select a source
food xi. Afterwards, a new source food vi around the selected
neighborhood location is computed using (1); finally, if the
fitness value of this new position improves the previous one
then the bee position is updated.
(c) Scout phase – at each time in which the exploration of a
source food xi does not finish with a solution improvement,
a counter increments the number of trials of that food source.
If the value in this counter is greater than a threshold Clim,
this source xi is abandoned and a new food source is randomly
selected by a scout bee.

D. Cost Functions
Classification error: this is the same factor used to measures

the performance on the myoelectric control system; hence, it
is the ideal function to compare the discriminant information
of the EMG patterns. This factor is computed as the relation
between the number of incorrect decisions and the total number
of decisions. To compute this relation is necessary to know the
predicted class vector ŷ, therefore, the classification scheme
composed of the block diagrams inside the dotted line in Fig.
2 (i.e. the conventional myoelectric system) must be used;
consequently, the computational complexity is significant.

Correlation Factor. Several factors have been proposed to
quantify the amount of common signal presented between two
dimensions of a signal, the most common being the cross cor-
relation factor [16]. We then considered theN ×N correlation
coefficient matrix Rx. This matrix is symmetric and has ones
in its main diagonal; therefore, to quantify the correlation level
it is enough to consider the lower or upper diagonal elements.
An alternative considering the lower elements is

fc = sum(tril(|Rx|)), (3)

where tril(.) is a function that returns the lower triangular
elements of the matrix without the main diagonal ones. To
restrict the correlation factor to [0, 100], we have defined

Fc = 100× 2fc
N2 −N

, (4)

which has been used for computing the correlation factor
between dimensions of the EMG signal.

E. Myoelectric Control Systems with iPCA tuning
Fig. 2 depicts the myoelectric control scheme with iPCA

tuning [5], which uses an iPCA transformation for tuning input
patterns. This transformation is a variation of the PCA which
was initially used for improving the classification performance
in recognition face problems [11]. The purpose of the iPCA
transformation is to generate a new signal space where the dis-
criminative information related to the movement class is ampli-
fied, while other types of information are attenuated. However,
there is a drawback: the patterns’ dimensions increase by a
factor of C. Considering an input pattern corresponding to N
EMG channels and a classification system with C classes, the
use of a transformation matrix WiPCA with size CN × N is
necessary. Therefore, the projection of the input signal results
in a new pattern of dimension CN (see Fig. 1) [5].
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Fig. 1. Optimization scheme used in the parameter configuration stage.
Wi is a PCA matrix transformation of size N ×N for i = 1, ..., C.
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Fig. 2. Steps of the pattern recognition based myoelectric control system
with iPCA tuning [5]

A reduced iPCA transformation can be defined for reducing
the effects of dimension pattern increments. In this solution, it
is necessary to compute a reduced iPCA transformation matrix
WR. This matrix projects the input patterns and generates just
the N1 most discriminative dimensions at the output (with
N1 < CN ). To compute WR it is necessary to solve the block
diagram in Fig. 1. The output of this scheme is the vector
O, which contains N1 channels selected from the CN set.
Using this vector, the relation between the iPCA transformation
matrix and the reduced iPCA transformation matrix is defined
as WR =WiPCA(O, :), where the MatLab notation for sub-
matrices is used.

III. METHODS
In order to evaluate the classification performance, for each

cost-function/search-algorithm combination, a methodology
based in three steps has been applied: (a) EMG signal acqui-
sition, (b) computing the reduced iPCA matrix and (c) system
evaluation.
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A. EMG signal acquisition
An EMG database has been used in order to perform the

experiments. The data are the same used in [5], which were
collected from ten healthy subjects performing eleven mo-
tion classes. EMG signals were collected from ten sites on
the forearm using adhesive duotrodes manufactured by 3M.
These signals were amplified to guarantee potentials in range
[+5,−5]V and a bandwidth of 1Hz to 500Hz. Afterward,
signals were sampled at 1Khz and quantized with a 16-bit
resolution.

Experimental data were collected during eight trials. Each
trial consists of two repetitions of the following eleven motions
classes performed in sequential order, namely: wrist prona-
tion/supination, wrist flexion/extension, hand open, key grip,
chuck grip, power grip, fine pinch grip, tool grip, and a rest
class. The intensity of the contraction was determined by the
subject, but they were encourage to contract to a level that
they comfortable repeating for the duration of the experiment.
During all trials, subjects elicited the contraction from the rest
position, held the contraction for 4 s and then returned to the
rest position for a predefined intermotion class delay period.
Trials 1, 2, 3 and 4 used intermotion class delay periods of
3, 2, 1 and 0 s respectively. Trials 5-8 used intermotion class
delay periods of 2 s. In our work, the EMG data recorded from
trials 1, 3 were used as a training data set. EMG data recorded
from trials 2, 4 were used as a test data set. And finally, EMG
data recorded from trials 5 and 6 were used as a validation
set to resolve the optimization problem defined in section II.B.
Otherwise, for all these sets the intermotion class delays were
excluded such as reported in [5].

B. Computing the reduced iPCA matrix
This step has been executed in two sequential tasks: (a)

search of the reduced dimension vector O, and (b) building of
the reduced iPCA transformation matrix WR.

The first task began with the computing of the iPCA trans-
formation matrices, using the training data. Afterward, the val-
idation data were projected with iPCA transformation matrices
and the transformed patterns were used to execute the optimal
subset channel search. The result of this search is the vector
O composed by the N1 channels with most discriminative
information. This search was executed with the six possible
combinations of cost-function/search-algorithm. Therefore, at
the end of this task the subsets Oij were obtained, where the
sub-indexes i, j indicate the cost function and search algorithm,
respectively, where i = 1 and i = 2 represent, respectively, the
classification error and the correlation factor, and where j = 1,
j = 2 and j = 3 represent, respectively, the SFS, the SFFS and
the ABC.

For all search algorithms the N1 parameter was set to 30,
such as recommended in [5]. In our case, the SFS algorithm
was configured with just one stop criterion, namely: length of
the selected subset equal to N1. The SFFS algorithm used two
stop criteria: (a) the same defined in SFS, (b) the maximum
number of iterations (Cmax = 120). The ABC algorithm used
other kind of parameters, as summed up in Table I.

To compute the classification error cost function the pro-
cessing scheme formed by the blocks inside the dotted line

TABLE I
ABC ALGORITHM PARAMETERS

Symbol Parameter Value
ε Minimum value of cost function 0
S Number of food sources 10

[vmin, vmax] Limit values [1, 110]
Cmax Number of maximum cycles 120
Clim Limit of cycles to improve a solution 6

in Fig 2, (i.e. the conventional myoelectric control system)
was used. The configuration was the following: overriding
windowing feature extraction [17] with lengths of 150ms and
sliding windows of 25 ms, features conformed by the first 6
autoregressive coefficients (AR6) [18], dimensionality reduc-
tion method based on uncorrelated LDA (ULDA) [3] and LDA
(Linear Discriminant Analysis) classifier [19]. At this stage,
each channel was used independently, to train and subsequently
test the control system, like presented in [5].

At the second task we computed the reduced iPCA transfor-
mation matrix corresponding to each pair cost function/search
algorithm.

C. System evaluation
The last step was the evaluation of the classification system.

This was executed in two phases: (a) the test data classification,
and (b) the classification error computing. The first phase was
achieved with the process architecture depicted in Fig 2, using
the same configuration described for the classification error
cost function computing (see section III.B). This process was
executed for each of the reduced iPCA transformation matrices
W ij

R . As the output we obtained the predicted class vector
ŷij . The second phase uses the vector ŷij to compute the
classification error as defined in section II.D. The classification
error is individually evaluated for each user of the system.

IV. RESULTS
All the simulations have been executed on the MATLAB

platform implementing some modifications and adding some
new functionalities to the myoelectric control toolbox pre-
sented in [3]. The modifications were necessary to interpret
the EMG data base that had a different structure than the used
in [3]. The added functionalities were done for configuring
and executing all the iPCA related functions, namely: optimal
search, transformation matrices computing and projections.

The results can be divided in two groups: (a) results regis-
tered during reduced iPCA transformation matrix computing
and (b) results registered during EMG pattern classification.

TABLE II
COMPARISON OF

MEAN-NUMBER-OF-ITERATIONS/MEAN-ITERATION-EXECUTION-TIME

FOR THE SIX TREATMENT ALTERNATIVES DURING OPTIMIZATION

Cost Function SFS SFFS ABC
Class. error 30/1282s 64.9/1705s 120/475s
Corr. factor 30/5.62s 78.3/7.61s 120/1.12s

The results on the first group are shown in Fig. 3 and Fig. 4.
Fig. 3 displays the mean search time, i.e. the time necessary
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Fig. 3. Comparison of search time used for each of the six treatment
alternatives executed during optimization.
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Fig. 4. Comparison of the fitness value reached with each of the six
treatment alternatives during the optimization search.
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Fig. 5. Comparison of the classification error reached with each of the
six treatment alternatives. The error bar represents one standard deviation
of intersubject variability.

to compute the optimal vector O. The left figure displays
the search time for classification error cost function and the
right figure for correlation factor cost function. Complementary

information on this subject is presented in Table II. This table
reviews the mean values of the number of iterations and the it-
eration execution time for each cost-function/search-algorithm
combination. These times were computed on a PC with 2.8GHz
processor, 8Gb RAM memory and 4 cores. Fig. 4 depicts the
mean fitness value reached during the optimal search. This
value is presented for the six evaluated combinations of search
algorithm and the cost function.

The results registered during EMG pattern classification are
shown in Fig. 5. This figure displays the mean classification er-
rors generated when each of the six reduced matricesW ij

R were
used in the myoelectric control system. The black bars indicate
the classification errors obtained with the transformation matrix
W 1j

R (i.e. the transformation matrices computed with the classi-
fication error cost function) and white bars indicate the classifi-
cation errors obtained with the transformation matrix W 2j

R (i.e.
transformation matrices computed with the correlation factor
cost function). The vertical line on the bars represents one
standard deviation of inter-subject error variability. The red
line indicates the mean classification error obtained when the
EMG patterns were classified without the iPCA transformation.
A two way analysis of variances (ANOVA) was performed
over the error classification results, which has determined the
following behaviors: (a) it was not found sufficient statistical
evidence, showing the dependence between the search algo-
rithm and the classification error (p < 0.01), (b) it was found
statistical evidence indicating the dependence between the cost
function and the classification error (p < 0.02), and (c) it
was not found statistical evidence, indicating the dependence
between the interaction of both search algorithm and cost
function and the classification error (p < 0.01).

V. DISCUSSION

The results obtained during the reduced iPCA matrix compu-
tation have been useful to analyze two system characteristics:
(a) the execution time of the search process, and (b) the solution
fitness. Two metrics have been used to analyzes this execution
time (indicating a performance characteristic): number of iter-
ations and the execution time of each iteration (see Table II).
The product of these two metrics defines the search time (i.e.
the time necessary to find an optimal solution).

The search time in Fig. 3 shows that: (a) search time is not
trivial because reaches magnitudes of hours when using the
classification error cost function. (b) solutions founded with
classification error cost function are more susceptible to long
search times. The data have showed a relation of 250:1 between
the search time of the classification error cost function and the
search time of the correlation factor cost function. This was
expected due to the complexity associated with the supervised
and non-supervised cost functions (see section II.D); (c) the
higher search time, regardless the cost function, is for the
SFFS algorithm, while the lower time is for the SFS algorithm,
in the case of the classification error function, and the ABC
algorithm, in the case of the correlation factor. The difference
between the algorithms is significant.

The fitness values showed in Fig 4 indicate the following
behaviors: (a) the fitness computed on the classification error
cost function were lower than those computed on correlation
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factor cost function; (b) the optimal solutions computed with
sequential algorithms were near to the global minimum than the
ones computed with the bio-inspired algorithm. These results
suggest a superiority of the solutions computed with sequential
algorithms. In order to generalize that behavior, it is necessary
to test the bio-inspired algorithm using other configuration pa-
rameters; (c) the fitness reached with the sequential algorithms
SFS and SFFS are similar, then, we can suggest that the nesting
effect associated with the SFS algorithm is not significant in the
considered cost functions.

Fig. 5 shows the comparison of the performance reached
when the patterns were tuned with the different transformation
matrices W ij

R (i = 1, 2; j = 1, ..., 4). The results indicate
the following aspects: (a) the classification rates are similar
to the previous ones published in [5] and the classification
error of the conventional myoelectric control architecture is
superior than the classification error of the myoelectric control
architecture with iPCA tuning, (b) there are similar levels on
classification error when transformation matrices W i•

R were
used (i.e. transformation matrices computed with the i cost
function and each of the search algorithms), (c) there are
differences between classification errors when transformation
matrix W •jR were used (i.e. transformation matrices computed
with the j search algorithm and each of the cost functions).

The (a) behavior validates the superiority of the iPCA tuned
architecture over the conventional myoelectric control archi-
tecture. Otherwise, the (b) behavior was not expected. Due to
the superiority of fitness that were computed with sequential
algorithms (see Fig. 4), greater differences between the classi-
fication errors were expected. For instance, that classification
errors associated to transformation matrices computed with
sequential algorithms (W ij

R with j = 1, 2) were less than
classification errors associated to transformation matrices com-
puted with the bio-inspired algorithm (W ij

R with j = 3). This
suggests that finding of the minimal value for the cost function
is not sufficient condition to guarantee minimal classification
errors during the evaluation of the myoelectric control system.

Finally, the (c) behavior was expected, basically by two
reasons: (i) the superiority of classification error over corre-
lation factor in determining the discriminant information in the
selected subsets. (ii) The higher fitness of computed solutions
by systems with classification error cost function (see Fig. 4).

VI. CONCLUSIONS

The effects of cost function and searching algorithms on my-
oelectric control systems with iPCA tuning were investigated
in terms of execution time, solution fitness and classification
performance. The alternatives considered for cost functions
were the following: classification error, correlation factor, and
search algorithms (SFS, SFFS and ABC). The results showed
a significant superiority on classification performance when
reduced iPCA matrices computed with classification error cost
function were used. The results also showed the indepen-
dence of classification performance with regard to the search
algorithm. Future works will investigate other configuration
parameters in the ABC algorithm as well as the effects of the
selected subset length on the classification performance.
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