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Abstract² This paper refers to a basic study toward the goal 

of developing a simple and easy-to-use input interface based on 

P3 components of visual, event-related potentials. Because 

contamination from eye movements and eye blinks is a problem, 

a method for removing eye movement artifacts from 

electroencephalogram (EEG) signals by applying an 

independent component analysis un-mixing matrix was 

proposed and implemented. Input character decisions were 

executed using a support vector machine (SVM) for judging the 

P3 existence of a single stimulus. The performances were 

compared while varying the number of channels of EEG signals, 

the types of feature vectors, and the ratio of the number of data 

used for training the SVM. The results indicated that three EEG 

signal channels (Fz, Cz, Pz) were enough to remove artifacts 

related to eye blinks and vertical eye movements and could be 

used to make a decision about input characters. The number of 

trials necessary to decide the input characters was ten on 

average. The best ratio achieved for the number of training data 

of targets and non-targets was 1:2. These results should be 

confirmed using a larger number of data sets. 

I.  INTRODUCTION 

The concept of moving an object just to make it think has 
often been discussed in science fiction. Recently, it has 
become a reality as a result of extensive research in the field of 
brain computer interfaces (BCIs). The BCI that uses scalp 
electroencephalograms (EEGs) is the most practical type 
because it can be realized via non-invasive measurement 
without large-scale equipment. There are two kinds of BCIs 
that use scalp EEGs: one uses spontaneous EEG and the other 
uses event-related potentials (ERPs). For the ERP-based BCI, 
many approaches use P3 (or P300) components. P3 is a late 
component with a latency of 250 to 800 ms and is considered 
to be related to the cognitive function of the brain. Its 
amplitude increases by focusing attention on the events (Fig. 
1). P3 cannot be observed in a single EEG trace because of 
background activity. Therefore, P3 is acquired by averaging 
some tens of EEG segments clipped from the original trace 
triggered by the onset of the events. 

P3Speller is a well-known BCI application that uses P3[1] 
and it is expected to eventually serve as a communication tool 
for patients with amyotrophic lateral sclerosis (ALS) [2]. For 
the P3Speller, a 6×6 matrix of characters is presented on a 
display, and one of the matrix rows or columns is successively 
DQG�UDQGRPO\�LQWHQVLILHG��7KH�XVHU¶V�WDVN�LV�WR�IRFXV�DWWHQWLRQ�
on a certain character that is to be input and to count the 
number of times the character is intensified. One trial is 
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composed of 12 intensifications (six rows and six columns), 
and is repeated a few dozen times. ERPs are obtained for each 
row and each column. The row and column that shows the 
largest P3 component are selected. The output is the character 
at the intersection of the selected row and the selected column 
(Fig. 2). Many studies have been conducted on the P3Speller. 
Y. Liu [3] reports a 98.2% precision rate when only four trials 
with six EEG channels are used.  

In the present study, we developed an input interface based 
on the P3Speller that can be applied not only to ALS patients 
but also to healthy people, with a view to operating a robot or 
controlling an environmental system as well as inputting 
characters. In such situations, eye movements and eye blinks 
often occur, particularly the latter. Therefore, a real-time 
technique to remove ocular-related artifacts is essential. In 
addition, to make it easy to use, the number of EEG channels 
and the number of trials to be used must be minimized. 

II. ARTIFACT REMOVAL USING INDEPENDENT 

COMPONENT ANALYSIS 

Initially, we tried to remove the artifacts caused by ocular 
movement and eye blinks by using independent component 
analysis (ICA)[4]. The data we collected consisted of two 
sections: the first was obtained during an eye movement 
session and the second section was obtained during a 
character input session. In the eye movement session, the 
participants were asked to perform horizontal and vertical eye 
movements and eye blinks as instructed. The eye movement 
session was introduced because a sufficient number of 
horizontal and vertical eye movements and eye blinks are 
necessary to obtain their related independent components 
(ICs) from the EEGs in ICA.  

A paradigm similar to that of the P3Speller was used for 
the character input session. A 4×4 matrix of characters was 
presented to each participant. The participants were asked to 
refrain from suppressing their eye movements and eye blinks, 
but then actively allow them in the second session in order to 
obtain the EEGs contaminated with ocular artifacts. EEG data 
measured during the two sessions were concatenated, and this 
was decomposed by ICA. The ICs that showed high 
coefficients of correlation with Electro-oculogram (EOG) 
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Fig. 2.  Display that is similar to 

P3Speller 

 

Fig. 1.  An example of P3 

components (unpublished data) 
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during the first section were removed as ocular artifact 
components. An example is shown in Figs. 3±5. Fig. 3 shows 
EOG and EEG data for the three parts of the eye movement 
section: the horizontal eye movements, the vertical 
movements, and the eye blinks. Fig. 4 shows the coefficients 
of correlation between EOG and each IC. The artifact 
components can be identified by selecting the component 
showing a high coefficient of correlation with EOG 
automatically. Fig. 5 shows EEG data after the ocular artifact 
data were removed. These procedures were tested for various 
EEG data sets composed of different numbers of channels 
from different regions. As a result, it was possible to remove 
the automatic detection and ocular artifact components by 
using the EEG data from four to six channels, including the 
lateral frontal regions and the central region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. SAVING THE CONVERGENCE TIME OF ICA BY 

APPLYING THE UN-MIXING MATRIX 

As for the method shown in Section II, the convergence 
time for ICA becomes a problem in judging the input 
character in one moment. Therefore, we proposed a method 
for the detection and removal of ocular artifact components 
[5]. This does not use ICA for the data to be judged but instead 
applies an un-mixing matrix for acquiring ICs that were 
obtained previously using another data set. This method is 
based on the hypothesis that the un-mixing matrix for one 
healthy person provided by ICA does not change too much if 
the electrode placement is the same.  

The detailed procedure is shown below. First, EEG data 
are collected during the eye movement session described in 
Section II, and an additional session is implemented in which 
the participants are required to execute an oddball task. In the 
oddball task, the participants are given target stimuli (such as 
D�UHYHUVHG�OHWWHU�³&´��DQG�QRQ-target stimuli (such as a normal 
OHWWHU� ³&´�� LQ� D� UDWLR� RI� ���� DQG� DUH� Dsked to count target 

stimuli. The oddball session was added because the eye 
movement-related ICs were not obtained separately if the 
un-mixing matrix obtained from EEG data of an eye 
movement session alone was applied to that of the input 
character session. Second, ICA is given to the connected data 
of two sessions and an un-mixing matrix and its inverse matrix 
are obtained. The ICs related to ocular movement are 
identified using the coefficients of correlation with EOGs 
during the eye movement session. The corresponding rows 
and columns are removed from the un-mixing matrix and its 
inverse matrix, respectively. The product of these matrices is 
applied to the EEG data of the input character trials. Fig. 6 
shows the procedure of the proposed method. 

 

 

 

 

 

 

 

 

 

 

Five healthy undergraduate students (A-E) participated in 
the experiment after giving a written informed consent. The 
sequence of an eye movement session, an oddball task, and an 
input character session was termed a data set. For each 
participant, six to seven data sets were collected. 

In most data sets, one of the ICs was identified as a 
horizontal eye movement-related component, and another was 
identified as the component related not only to the vertical eye 
movements but also to the eye blinks. One more component 
related to vertical eye movements was found in some data sets. 
The rows of the un-mixing matrices corresponding to each 
identified component for each participant are superimposed in 
Fig. 7, which shows that they are highly reproducible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  EOG and EEG raw signals during an eye movement session 

 

Fig. 4.  Selection of artifact components depending on the coefficients of 

correlation between ICs and EOG 

 

Fig. 5.  EEG signals after artifact removal 

 

Fig. 6.  Procedure of the proposed method 

 

Fig. 7.  Weights of the un-mixing matrivsx for each component 

6505



  

The effect of the artifact removal using the proposed 
method was tested by comparing the EEG data before and 
after the removal. Fig. 8 shows an example of this. The EEG 
waveforms before the removal were similar to EOG; however, 
after the removal, the similarity disappeared. These 
observations suggest that the ocular artifacts were removed 
successfully. 

 

 

 

 

 

 

 

 

 

IV. JUDGMENT OF INPUT CHARACTER USING A 

SUPPORT VECTOR MACHINE 

Next, we worked on a method to judge an input character 
using a small number of electrodes and trials. The P3 
components are usually obtained by averaging EEG data for 
approximately 20 trials. The support vector machine (SVM) 
was introduced so that the existence of P3 is determined using 
single-trial data. Methods that uses the SVM have previously 
been reported in many papers (for example, see [6]). So we 
tried to reduce the number of trials and the number of EEG 
channels. We also examined the effects of this method for 
creating feature vectors and preparing training data sets on the 
discrimination performance. As for the feature vector, the 
averaged waveform of each channel to reduce noise is 
compared with the connected one. In addition, for the SVM 
training sets, the ratio of the target trials (including the input 
character where the EEG is expected to include P3 
components (TG)) to non-target trials (not including the input 
character (NTG)) was changed from 1:1 to 1:3. 

A. Data acquisition 

The participants were three healthy male undergraduate 
students who gave a written informed consent. EEG signals 
from 19 locations in the 10/20 system and the horizontal and 
vertical EOGs were measured with a digital multi-channel 
amplifier for biological signals (Polymate AP1132, TEAC). 
The acquired EEG signals were sampled at 200 Hz after being 
ampliILHG�ZLWK�����9�PP�VHQVLWLYLW\�DQG�D�����V�WLPH�FRQVWDQW�� 

Initially, the data from the eye movement session for 
calculating the un-mixing matrix were collected. The 
participants were asked to perform horizontal/vertical eye 
movements and eye blinks according to the instructions on the 
screen. They were also required to do an oddball task. One 
KXQGUHG�VWLPXOL�FRPSRVHG�RI�UHYHUVH�OHWWHU�³&´V�DQG�QRUPDO�
OHWWHU� ³&´V� LQ� D� UDWLR� RI� ���� ZHUH� SUHVHQWHG� DW� D� VWLPXOXV�
interval of 500 ms. The participants were instructed to count 
WKH�QXPEHU�RI�WLPHV�WKDW�UHYHUVH�³&´V�DSSHDUHG� 

After the oddball session, a character input session was 
executed. A 5×6 character matrix based on P3Speller was 
presented to the participants using an original program written 
in MATLAB language. One of the rows and columns of the 
matrix was successively and randomly highlighted by 
changing the foreground color from yellow to green at 600 ms 
intervals. 7KH�SDUWLFLSDQW¶V� WDVN�ZDV� WR�IRFXV�RQ�D�FKDUDFWHU�
that was input under the instruction of the experimenter, and 
he then had to count the number of times that the character was 
highlighted. Each trial comprised 11 stimuli, which means 
every row and every column was highlighted once in a trial. 
Thirty trials were executed for an input character. The 
sequence of an eye movement session, an oddball task, and 
three input character sessions was called a data set. Three to 
five data sets were collected for each participant. 

B. Application and assessment of the proposal method 

We analyzed the EEG signals, which were derived from 
seven scalp locations (Fp1, Fp2, F7, F8, Fz, Cz, Pz), by using 
the linked earlobe as a reference. Fp1, Fp2, and Fz were 
selected as the locations with the largest eye blink-related 
artifacts. F7 and F8 were selected to obtain the horizontal eye 
movement component. Fz, Cz, and Pz were chosen as the 
locations where P3 components could be clearly detected. 

 We then sought to compare an easier-to-use 
method²judging the performance using only three channels, 
Fz, Cz, and Pz²with the seven-channel system used above, 
based on the assumption that eye movements can be 
suppressed in some situations. 

The components of eye blinks/vertical eye movements 
were removed from the EEG signals obtained during the 
character input session by using the method previously 
described. In addition, the components of horizontal eye 
movements were removed only when seven channels were 
used. After artifact removal, the EEG signals were low 
pass-filtered with a high cut frequency of 7 Hz to reduce alpha 
activities.  

The baseline correction was performed using the averaged 
value of the signal for 0.1 s duration just before the trigger 
point by setting a trigger point at the onset of each stimulus. 
The filtered and baseline-corrected EEG signals from selected 
channels were extracted from 0.1 s to 0.6 s after every trigger 
point and used as the feature vector for SVM, being averaged 
over the channels or being connected in a sequence (Fig. 9).  

The SVM was trained to discriminate the stimuli that 
caused P3 (TG) from those that did not cause P3 (NTG) using 
one of the previously described types of feature vectors by 
varying the ratio of TG and NTG numbers used for training 
from 1:1 to 1:3.  

The basic method for deciding the input character was as 
follows. The number of stimuli judged to be TG by SVM in 
the trials was counted for each row and column, respectively. 
The row that showed the largest number was selected, as was 
one column. The character at the intersection of the selected 
row and the selected column was chosen as the target 
character. 

 

 

Fig. 8.  Before and after removal of ocular components (left: before and 

after removing the vertical components. right: before and after removing 

the horizontal components) 
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The performance was evaluated by determining the 
number of trials needed to obtain the correct answers. The 
rows and columns were selected as above, increasing the 
number of trials (N) to be considered one by one. The 
maximum number of trials was 30. Then, 30 pairs of 
selections were obtained for an input character. The number of 
trials necessary to obtain the answer (that is, to decide the 
input character) was found as the minimum number of i where 
the pair selected in i-th selection was the same as that of all j-th 
selections, where j > i. 

C. Results 

P3 components were observed clearly only for the first 
characters of each data set for two participants, which may 
have been caused by fatigue or attention deficit. Therefore, six 
input characters (three per participant) were analyzed. One of 
the three characters (11 stimuli × 30 trials) was used for the 
training data, and the other two characters were used for 
evaluation. Therefore, six combinations per participant were 
obtained and used as the evaluation sets.  

Fig. 10 shows the results in the average and 
minimum/maximum of i for each method for two participants 
�³$´�DQG�³%´���The correct answer was obtained on average in 
approximately 10 trials. When the training ratio was 1:2 
(center panel of Fig. 10), the averages and the difference 
between the maximum and the minimum tended to be smaller. 
Fig. 11 shows the relationships between the number of used 
trials and the number of correct answers when the training 
ratio was 1:2. The best performance (six trials) was found in 
SDUWLFLSDQW�³$´�ZKHQ�RQO\�WKUHH�FKDQQHOV�DQG�WKH�FRQQHFWHG�
feature vectors were used. The averaged feature vectors could 
not yield good results; this suggests that the noise reduction 
effect achieved by averaging the signals over the channels was 
not provided because the number of channels was small. A 
ratio of 1:2 was considered to be advantageous because our 
algorithm for deciding the input characters is more tolerant of 
false negatives than false positives. 
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Fig. 9.  Two types of feature vectors made by averaging EEG signals 

over channels (left) and by connecting them in a sequence (right) (upper 

panel: superimposed EEG signals, lower panel: averaged signals, blue: 

target, red: non-target) 

 

Fig. 10.  Average (|,¸) and minimum/maximum trials needed to 

obtain correct answers for two participants (upper: A, lower: B), three  

ratios (left: 1:1, center: 1:2, right: 1:3), three combinations of used 

channels (blue: artifact removal; 7ch, SVM; 7ch, red: artifact removal; 

7ch, SVM; 3ch, green: artifact removal; 3ch, SVM; 7ch), and two 

feature vectors (|� averaged, ¸:connected) 

 

Fig. 11.  Comparison of the number of trials needed to obtain correct 

answers in the case of a ratio of 1:2 for two feature vectors (left: 

averaged, right: connected, the colors indicate the same combinations as 

those in Fig. 10) 

6507


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

