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Abstract- Noise from motion artifacts is currently one of the 
main challenges in the field of ambulatory ECG recording. To 
address this problem, we propose the use of two different 
approaches. First, an adaptive filter with electrode-skin 
impedance as a reference signal is described. Secondly, a multi- 
channel ECG algorithm based on Independent Component 
Analysis is introduced. Both algorithms have been designed and 
further optimized for real-time work embedded in a dedicated 
Digital Signal Processor. We show that both algorithms 
improve the performance of a beat detection algorithm when 
applied in high noise conditions. In addition, an efficient way of 
choosing this methods is suggested with the aim of reduce the 
overall total system power consumption. 

The fast improvement in microelectronic systems is having a 
large impact in the design of novel ambulatory 
electrocardiogram (ECG) monitoring devices. New advances 
in electronics allow more complex computational algorithms 
working in ultra low power consumption microprocessors 
[I]. Novel wearable systems extend the time of continuous 
monitoring from the 24-hours that was standardized about a 
decade ago to several days or even weeks. Ambulatory 
monitoring of the ECG has several clinical applications. It is 
widely used for the diagnosis of cardiac pathologies and in 
the assessment of therapy [2]. In addition, low cost ECG 
monitoring devices lead to other new non-clinical 
applications in sports and lifestyle. However, ECG recorded 
during daily activities have higher levels of noise as 
compared to when measured at rest. Noise due to motion 
artifacts can corrupt the signal making its interpretation 
difficult. 

Several methods for noise reduction and motion artifact 
removal have been proposed in the literature. Some were 
based on traditional denoising techniques [3]. More recently, 
new and more effective techniques based on adaptive 
filtering [4] or blind-source separation techniques [5] have 
been proposed. However, this problem still remains a 
challenge and needs further research. 
This paper describes an implementation and optimization of 
two algorithms for motion artifact reduction using Single- 
Instruction Multiple-Data (SIMD) instructions. The first 
algorithm method is an adaptive filter that uses skin- 
electrode impedance as a reference signal. The second 
method is based on Blind Source Separation (BSS) 

techniques, such as Principal Component Analysis and 
Independent Component Analysis (ICA). 

After filtering the ECG signals by using these techniques, a 
robust beat detection algorithm based on continuous wavelet 
transform [6] is applied. The performance of the beat 
detection algorithm was used to evaluate the performance of 
the filtering techniques studied in this work. 

A. Adaptive Filter Based Motion Artifact Reduction 

Previously, we reported [9] a system that, alongside with 3- 
lead ECG recording is capable of measuring electrode-skin 
impedance (ETI), which has been shown to correlate with 
motion artifacts. The ETI signal can be used as a reference 
signal in an adaptive filter to reduce motion artifacts. 

The least-mean-square sign-error algorithm (LMS-SE) is an 
alternative of the LMS algorithm [7]. The objective of the 
LMS-SE algorithm is to reduce the computation cost 
compared to the standard LMS algorithm. As its name 
indicates the equation of LMS-SE algorithm is given as: 

where p is the convergence step, x(k) is the reference signal, 
d(k) is the desired signal and e(k) is the error. For a linear 
and stationary system H, the quantization of the error vector 
can lead to a decrease in the convergence speed, and 
possible divergence. In the LMS-SE algorithm, the average 
gradient only uses a discrete set of directions. The limitation 
in the gradient direction may cause updates that result in 
frequent increase in the square error, leading to instability. 

Fig. 1 : Outline of the Least-Mean Square Sign Error algorithm 
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to the minimum value of the new mean-square error surface. 

The filter is outlined in Fig. 1. To remove the baseline of the 

ECG and ETI signal before LMS-SE, we use a high-pass 

filter with passband 0.05 Hz. 

B. ICA and PCA Based Motion Artifact Reduction 

ICA and PCA are methods for separating mixed signals [8] 

and have been previously evaluated in the context of motion 

artifact reduction in ambulatory ECGs recordings [5]. ICA 

outperformed PCA in every metric, except for computational 

complexity, where ICA is more complex. 

 

In this work we have chosen to work with three ECG leads. 

This is expected to provide a sufficient number of leads to 

apply statistical methods for ECG de-noising while 

minimizing the invasiveness of the system. The electrode 

position was selected [6] to maximize the amplitude of the R 

and P waves in the ECG. Electrodes are placed in positions 

V2, V3 and V4 (precordial lead positions), with reference 

electrode placed on the upper right portion of the chest. 

 

In order to use ICA autonomously for motion artifact 

reduction in ECG recordings, an algorithm for the selection 

of independent components is necessary. This is one of the 

main challenges for using ICA for de-noising ECGs. Here, 

based on a previous study [5], the single independent 

component (IC) with the highest kurtosis is retained. The 

assumption is that this IC is the one that correlates the most 

with the ECG. The remaining ICs are set to zero before the 

inverse ICA transformation is performed to obtain the 

filtered ECG signals. 

C. Digital Signal Processor 

For the implementation platform, we used imec’s CoolBio 

ultra low power biomedical signal processor [10], which at 

its core has NXP’s CoolFlux BSP dual Harvard architecture. 

The CoolBio chip combines a 100 MHz 24/56-bit CPU, 

dynamic clock and power managers with an event-driven 

architecture. The 24-bit data path can either be used as 24-bit 

scalar or as 2x 12-bit Complex/SIMD with 56-bit 

accumulators (56-bit scalar or 2x 28-bit complex/SIMD). 

The dual architecture thus enables either 2x 24-bit or 4x 12-

bit operations to be executed in parallel. 

III. METHODS 

A. Evaluating Motion Artifact Reduction 

To evaluate the performance of the motion artifact reduction 

algorithms, we use the performance of a beat detection 

algorithm [6], in terms of sensitivity (Se) and Positive 

Predictivity (PP), applied on the unfiltered signals and the 

signals filtered by LMS-SE and ICA.  

 

The evaluation database consists of 10 1-hour segments of 

ECG signals created from ECG template beats for V2, V3 

and V4, using RR intervals collected from previous studies. 

Ten 1-hour ECG noise and impedance signals were recorded 

at the lower back of different subjects, above the lumbar 

curve, where the ECG is considered to be negligible. Each 

segment of clean ECG and noise is then combined to create 

100 hours of motion artifact contaminated ECG. The noisy 

ECGs are split into 4-second segments where the SNR is 

calculated and the beat detection performance is evaluated. 

B. Adaptive Filter Optimization 

We calculate LMS-SE sample-by-sample on ECG and ETI 

both sampled at 256 Hz. From the initial 24-bit scalar 

implementation, the LMS-SE algorithm is optimized in two 

steps; first a cyclic buffer is introduced for addressing the 

regressor delay line. This avoids copying every element of 

the delay line when a new sample is inserted. The second 

optimization is to use SIMD instructions to update 4 filter 

taps in parallel. For both ECG and impedance, we use a 5 

section cascaded biquad filter for high pass filtering. 

C. ICA Optimization 

We calculate ICA on 4 second input blocks of 3-lead ECG, 

sampled at 256 Hz. From the original 24-bit scalar 

implementation, the FastICA [8] algorithm is optimized 

mainly by focusing on converting functions to exploit the 

SIMD mode of the DSP. Special attention is given to the 

contrast function, which is the most critical part of the code. 

In this implementation, the cubic contrast function is chosen, 

which is used to measure the kurtosis of the independent 

components. The inner iteration loop for the cubic contrast 

function is defined as: 

                     Y = X ! (w(k)! X
T )3  (3) 

Where X is the multi-channel ECG matrix and w(k) the 

current weight to improve. The loop is repeated for every 

input channel until two consecutive iterations converge. The 

dataflow graph of the inner loop is illustrated in Fig. 2. The 

number of executions of this inner loop is dynamic, and has 

a large impact on the energy dissipated by the algorithm. 

Using SIMD instructions and 4 accumulators, the inner loop 

is processed 8 samples of X simultaneously. In the last stage 

of the inner loop, the accumulators are joined and appended 

to a second set of 48-bit accumulators in memory, which is 

again accumulated into 56-bit accumulators after the critical 

loop. To decrease the number of iterations required, we 

reuse the demixing matrix of the previous block as the 

starting point for the next block. The remaining 

computations of the ICA algorithm is dominated by matrix 

multiples and the calculation of kurtosis, both of which are 

also optimized with SIMD instructions. 

 

 
Fig. 2: Inner loop of the ICA algorithm using a cubic contrast function for 

3-lead ECG 
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Fig. 3: a) Clean ECG signal b) ECG with added noise c) impedance signal 

corresponding to motion artifact d) LMS-SE adaptive filtered ECG, using 

imaginary impedance component as reference e) ICA filtered ECG using 

automatic component selection. The red circles indicate detections as 

reported by the beat detection algorithm. 

D. Energy Usage Estimation 

The cycle count is obtained from the R11 CoolFlux BSP 

Instruction Set Simulator (ISS). Based on profiling of the 

CoolBio DSP, we consider two cases of energy dissipation 

per clock cycle; the first is based on a non-optimized 

algorithm implementation, which does not fully exploit the 

capabilities of the DSP, which has been estimated to 46 

pJ/cycle. Also, we consider the case of a highly optimized 

algorithm where all functional units of the DSP are active in 

every cycle, which has been estimated to 96 pJ/cycle. For 

the energy estimation, only energy spent inside the DSP is 

counted. This excludes any I/O and analog interfaces.  

IV. RESULTS 

A. Motion Artifact Reduction 

 

In Fig. 3, the different inputs and outputs of the algorithms 

are illustrated. In Fig. 4, the result of the beat detection is 

shown. ICAoptimal is defined as using the theoretical 

component subset which gives the best beat detection 

performance, decided by computing all possible 

combinations, and keeping the best result. This shows the 

theoretical performance if we have a perfect component 

selection algorithm.  

 

 
Fig. 4: Sensitivity and positive predictivity of a beat detection algorithm on 

the unfiltered vs. filtered signals 

 

 

 
Fig. 5: Number of cycles spent for different tap lengths in the LMS-SE 

algorithm on filtering a 4-second ECG block (at 256 Hz) for three different 

CoolBio implementations. 

 

B. Adaptive Filter Optimization 

The cycle budget of three different LMS-SE 

implementations when adjusting the number of taps used for 

filtering the signals on a block of 4 seconds of input data is 

shown in Fig. 5. The first implementation does not use any 

DSP specific optimizations, while the second 24-bit uses a 

cyclic input buffer. The last implementation uses both the 

cyclic buffer and SIMD instructions. 

 

In addition to this, the two biquad highpass filters are each 

using 9746 cycles per 4-second block. For the final 

implementation, 4 filter taps are used in the LMS-SE filter, 

as this was found to give the highest beat detection 

performance. 

C. ICA optimization 

In Fig. 6, a histogram over the number of iterations required 

to compute ICA on 4-seconds of ECG data is shown. The 

median-MAD number of iterations required did not change 

significantly (12-29.32 vs. 12-29.43) when quantizing the 
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data from double precision floating point down to 12-bit 

SIMD data. 

 

 
Fig. 6: Distribution of iterations needed to converge on ICA solution for 

90000 simulations. The range between 0 and 100 iterations is shown above. 

Upper limit was set to 2000 iterations, epsilon was set to 0.0001. 

 

TABLE I 

CYCLE COUNT ESTIMATION FOR THE INNER LOOP OF THE ICA ALGORITHM 

ICA 

Implementation 

Cycles per 

iteration 

Median-MAD 

iterations per 

block 

Median-MAD 

number of 

cycles per 

block 

Generic  

24-bit FastICA 

 

126 908 12 – 29.32
 

1 522 896 – 

3 720 943
 

Optimized SIMD  

12-bit FastICA 
8 762 12 – 29.43

 
105 144 – 

257 866 

 

In Table I, the cycles spent in the inner loop of the ICA, and 

the median-MAD number of iterations required per block for 

each of the two algorithm implementations is shown. 

D. Energy Usage Estimation 

In Table II the energy estimation for both ICA and LMS-SE 

is summarized. With the CoolBio logic at 0.6 V and its 

memories at 0.8 V, and the frequency scaled to 10 MHz, we 

spend approximately 96 pJ/cycle, resulting in a median 

energy consumption of 13.8 !J for each block processed for 

ICA with SIMD, and 4.9 !J for each block processed by the 

LMS-SE. The energy dissipated by using 3-lead ECG vs. 1-

lead ECG plus 1-lead ETI is considered to be comparative. 

 
TABLE II 

ENERGY ESTIMATION FOR ICA AND ADAPTIVE FILTER, EXCLUDING I/O 

Algorithm 
Static 

cycles 

Est. 

dynamic 

cycles 

Static + 

dynamic 

cycles 

Energy 

per 

cycle 

Energy 

per 

block 

Generic  

24-bit FastICA 

 

688 874 1 522 896 2 211 770 46 pJ 102 !J 

Optimized SIMD  

12-bit FastICA 

 

38 167 105 144 143 311 96 pJ 13.8 !J 

Optimized LMS-SE    

(+ 2x IIR HPF) 

24-bit 

31 286 
(+ 2x 

9746) 

0 50 778 96 pJ 4.9 !J 

V. CONCLUSION 

The filtering performance and the DSP optimization of two 

different methods for motion artifact reduction were studied. 

Both algorithms improve beat detection results versus not 

filtering, and both algorithms were optimized using DSP 

optimization techniques. 

 

LMS-SE maintains 100% sensitivity and positive 

predictivity for the beat detection down to an SNR of -15 

dB, vs. ICA -16 dB, an improvement over unfiltered ECG 

which is sensitive down to -12 dB. The optimized ICA 

implementation uses on average 13.8 !J per 4-second block, 

vs. 4.9 !J per 4-second block with LMS-SE.  

For ICA, change in number of iterations per block is neglible 

when quantizing to the CoolBio SIMD mode from floating 

point. For LMS-SE, using the SIMD mode is more overhead 

than gain when the number of taps used is less than 16, 

which was the case in this study, where 4 taps were used.  

As most of the time during ambulatory ECG monitoring, we 

do not need motion artifact reduction, the largest gain in 

energy efficiency would be to disable motion artifact 

reduction during periods of low noise, enable LMS-SE 

during periods of moderate noise, and enable ICA during 

periods of high noise. To estimate the amount of motion 

artifacts in the ECG, we could use the energy in the 

impedance signal as an indication. 

As limitations of this study, only artificially generated 

signals were used to evaluate the performance of the 

algorithms. The beat detection performance was calculated 

in MATLAB on quantized versions of the algorithms, and 

the energy was estimated from the CoolBio instruction set 

simulator.  
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