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Abstract— Blind source separation (BSS) techniques are
widely used to extract signals of interest from a mixture
with other signals. These methods, however, typically lack
possibilities to incorporate any prior knowledge on the mixing
of the source signals. Particularly for electrocardiographic
signals, knowledge on the mixing is available based on the
origin and propagation properties of these signals. In this
paper, a novel source separation method is developed that
combines the strengths and accuracy of BSS techniques with
the robustness of an underlying physiological model of the
electrocardiogram (ECG). The method is developed within a
probabilistic framework and yields an iterative convergence
of the separation matrix towards a maximum a posteriori
estimation, where in each iteration the latest estimate of the
separation matrix is corrected towards the physiological model.
The method is evaluated by comparing its performance to
that of FastICA on both simulated and real multi-channel
ECG recordings, demonstrating that the developed method
outperforms FastICA in terms of extracting the ECG source
signals.

I. INTRODUCTION

Blind source separation (BSS) techniques like independent

component analysis (ICA) are widely used to extract signals

of interest from a mixture of recorded signals [1], [2], [3].

The goal of BSS techniques is to ’unmix’ the recorded

signals as to obtain the original source signals and enable

further processing or analysis of any particular source signal.

BSS techniques come in a variety of implementations, each

targeting specific source signal properties. Their common

denominator is that the BSS techniques assume statistical

independence of the source signals and assume virtually

no specific knowledge on the mixing of the source signals:

hence their description as being ’blind’.

In some problems, however, specific knowledge on the

mixing of the source signals is available and not exploiting

this knowledge impairs the source separation’s accuracy

and robustness [4]. In this paper, we develop a source

separation technique aimed at extracting electrocardiographic

signals from a mixture of electrophysiological signals and

interferences. This technique is derived within a probabilistic

framework and incorporates prior knowledge on the mixing

matrix in terms of an electrophysiological model of the

electrocardiogram (ECG).

Due to the prior knowledge, the developed source sep-

aration technique has the potential to outperform generic

BSS techniques in terms of robustness during situations

of low signal quality. In such situations, BSS techniques

have been reported to provide independent source signals
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that correspond to any kind of interference, but not to an

actual electrocardiographic signal [5]. With respect to merely

unmixing recorded signals based on the ECG model, the

developed source separation exploits the powerful mathe-

matical aspects of BSS techniques and is hence expected

to estimate the source signals more accurately.

The derivation and evaluation of the proposed source

separation techniques is discussed in the following way. In

Sec. II the ECG model is discussed and Sec. III focuses on

the derivation of the source separation algorithm. In Sec. IV

the source separation technique is evaluated and in Sec. V it

is discussed.

II. ECG MODEL

The contracting of the cardiac muscles during the beating

of the heart is initiated by the propagation of action potentials

across the myocardium. In a first-order approximation, the

action potentials at any point in time can be described by a

single dipole vector with stationary origin [6]. This vector

varies in both amplitude and orientation during the beating

of the heart.

The varying dipole causes circular currents to spread

through the conductive tissues surrounding the heart, all the

way to the cutaneous surface. Here, the skin impedance

causes potential differences that fluctuate over time: the

ECG. In this simplified model of the electrical activity

of the heart, the potential difference between two separate

locations on the skin can be regarded as the projection of the

dipole vector onto the geometrical vector that describes the

separate locations with respect to one another. This concept

is illustrated in Fig. 1

When performing a bipolar, multi-lead ECG measurement

with N recorded signals V(t) and relative electrode positions

Fig. 1. The ECG is determined by the projection of the heart’s dipole
vector onto geometrical electrode vectors. The amplitude of the ECG is the
length of the projected dipole vector.
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D, the relation between the 3-dimensional dipole vector S(t)
and V(t) can thus be described as

V(t) = DS(t) . (1)

Here, V(t) is a [N×T ] matrix, D is a [N×3] matrix, and S(t)
is a [3×T ] matrix, with T the length of each signal.

III. PROBABILISTIC SOURCE SEPARATION

The expression in Eq (1) resembles the problem of source

separation. When we assume a recording of N signals, each

comprising an unknown mixture of N source signals, the

problem of source separation is to ’unmix’ the recorded

signals x(t) as to find the source signals s(t):

x(t) = As(t) , (2)

where A is the mixing matrix.

The probability that the source model of Eq. (2) is correct

can be written in terms of the likelihood of the data and prior

probabilities on the source signals and mixing matrix [4]

p(A,s |x )∝p(x |A,s ) p(A) p(s) , (3)

where A and s are assumed statistically independent, con-

form the assumption that the properties of signal propagation

do not depend on the source signals and their magnitudes.

As mentioned previously, the goal of source separation is

to determine the source signals s(t). Confer Eq. (2), inference

of A also determines s(t). In addition, due to the typically

smaller dimensions of A with respect to s(t), inference of

A is computationally more efficient. Hence, the problem of

estimating the source signals in source separation methods is

typically translated to the problem of estimating the mixing

matrix.

In the context of wanting to estimate A, the sources signals

s(t) can be treated a nuisance parameter. Marginalizing over

s gives

p(A |x )∝p(A)
∫

p(x |A,s ) p(s)ds (4)

A. Blind source separation

When we would assume no knowledge on the mixing ma-

trix A, its prior probability distribution p(A) in Eq. (4) would

be uniform. When we would furthermore assume that the

mixing is noiseless, linear, and instantaneous [4], cf. Eq. (2)

and that the source signals are statistically independent, the

posterior probability distribution for A can be written as [2]

p(A |x )∝

∫

∏
i

δ

(

xi −∑
k

Aiksk

)

∏
j

p(s j)ds. (5)

Taking the logarithm on either side and defining the separa-

tion matrix W as the inverse of the mixing matrix A, Eq. (5)

can be written as

logp(A |x ) = logdetW+∑
j

log p

(

∑
k

Wjkxk

)

+C, (6)

where C is a constant.

B. Incorporating prior knowledge

In the separation of ECG signals, the mixing matrix A

is not completely unknown. The model of Sec. II provides

some information on how the mixing occurs. Lets redefine

the matrix D of Eq. (2) into a [N×N] matrix for which

the first 3 columns contain the geometrical positions of the

electrodes in 3-D space. The other columns of D can be set to

unity. Based on the model in Sec. II, the elements of mixing

matrix A can be modeled as:

Ai j = α jDi j +ηi j. (7)

Here, α is a scaling that can vary between recorded signals

and models differences in signal attenuation during propa-

gation. Any imperfections in this model are captured by the

(Gaussian) noise ηi j which is assumed to have zero-mean

and variance σ2
i j.

To keep the source separation analytically tractable, a few

more assumptions are made: 1.) the elements of the mixing

matrix are assumed independent: p(A) = ∏i j p(Ai j) [4]; 2.)

the scaling α and geometrical matrix D are statistically

independent; 3.) the noise variance σ2 is user-defined, e.g.

based on empirical results; 4.) our belief that D accurately

describes the electrode positions is reflected by assigning a

delta-function to p(Di j). With these assumptions, the prior

probability distribution p(A) can be written as

p(A) ∝ ∏
i j

∫∫

p
(

Ai j

∣

∣α j,Di j

)

p(α j) p(Di j)dα jdDi j

∝ ∏
i j

∫∫

exp

[

− 1

2σ2
i j

(Ai j −α jDi j)
2

]

p(α j)dα j.

By expressing our ignorance on the scaling parameters

α as a uniform distribution with minimum and maximum

values a1 and a2, respectively [4]:

p(α j) =

{

(a2 −a1)
−1

a1 ≤ α j ≤ a2

0 otherwise
, (8)

the prior probability becomes:

p(A) = ∏
i j

1

2(a2 −a1)Di j

{

erf( fi j (a1))− erf( fi j (a2))
}

,

(9)

with fi j(a) =
1√
2σi j

(Ai j −aDi j) and erf( f ) the error function:

erf( f ) = 2√
π

∫ f
0 exp[−t2]dt.

C. Towards a solution

The goal of the proposed source separation is to maximize

the posterior probability distribution in Eq. (6) with respect to

the choice for W. Including prior knowledge on the mixing

matrix A [2] and taking the derivative with respect to Wi j,

Eq. (6), the maximum-a-posteriori estimate for W follows

from:

∂

∂Wi j

{

logdetW +∑
l

log p

(

∑
k

Wlkxk

)

+∑
kl

log p(Akl)

}

= 0
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Introducing ui = ∑ j Wi jx j, this expression can be further

solved:

A ji +
∂um

∂Wi j

∂

∂um
∑

l

p(ul)+
∂Amn

∂Wi j

∂

∂Amn
∑
kl

log p(Akl) = 0

and further to:

∂

∂W
log p(A |x ) = AT +

(

p′i (ui)

pi (ui)

)

xT −AT MAT (10)

with

M=
∂

∂Amn
∑
kl

log p(Akl)=

√

2

πσ 2
mn

exp
[

f 2 (a1)
]

− exp
[

f 2 (a2)
]

erf( f (a1))− erf( f (a2))
.

By post-multiplying by WT W this expression can be made

covariant [7]. The optimum for W can subsequently be found

using a stochastic gradient search with learning rate γ:

Wi+1 = Wi + γ

[

Wi +

(

p′i (ui)

pi (ui)

)

uT Wi −AT
i MWi

]

. (11)

IV. EVALUATION

To evaluate the method against an existing BSS technique,

both the developed method and FastICA [3] are applied

on the same sets of data. These data sets are generated in

two ways: from simulations in which the source signals are

known and from real recordings in which the signal to noise

ratio of the ECG signals is low.

A. Simulated data

As starting point for the simulated data, three orthog-

onal leads of the ECG (known as the vectorcardiogram)

are adopted from the MIT-BIH Physionet database [8]. A

number of N supposed electrode positions for the simulated

data are chosen by picking the positions from Gaussian

distributions for which the means are randomly chosen. To

mimic the uncertainty in electrode positions that is typically

encountered in ECG recordings, the matrix D in Eq. (7)

is filled with the means of the Gaussian distributions and

not with the true (modeled) electrode positions (i.e. the

positions that were picked from the Gaussian distribution).

The set of recorded signals is generated by projecting the

vectorcardiogram onto the vectors describing the electrode

positions. In addition, each recorded signal is scaled by

a randomly determined scalar and corrupted with additive

noise and artificial powerline interference.

In Fig. 2, the three orthogonal ECG signals are shown.

Also in figure, a simulated multi-channel (N = 5) ECG

recording is shown. In Fig. 3 the results of the source

separation are shown. In each diagram, the top graph shows

the original input source signal. The middle graph shows

the source estimated by the developed method. The bottom

graph shows the source estimated by FastICA.

From Fig. 3 it can be seen that the overall estimation of all

three sources by the developed method is more accurate than

the estimation by FastICA. Quantitatively, the mean squared

error between the original source signal and the estimated

0 1 2 3 4
Time (s)

(a)

0 1 2 3 4
Time (s)

(b)

Fig. 2. Example of simulated recordings. In (a) the original sources used
as input in the simulation are depicted. In (b) the generated ECG recordings
are depicted for N = 5 ECG channels.

source signals is over 35% smaller for the developed method.

Despite the ability of both methods to extract three ECG

sources – although the source signal estimated by FastICA in

Fig. 3(c) can be barely called an ECG signal – the separation

of the T-wave in particular is mixed-up between the sources.

Where in Figs. 3(a) and 3(b) the T-wave is overestimated,

in Fig. 3(c) it is underestimated. An explanation for this

mix-up can lie in the inaccuracy in the estimated electrode

positions. With more accurately determined positions, the

unmixing by the developed method would be more accurate.

For the FastICA method, the total lack of knowledge on the

source mixing yields an even more inaccurate unmixing of

the source signals’ T-waves.

B. Real data

For the real data, a 45-minute, 8-channel recording per-

formed on the abdominal surface of a pregnant woman is

used. The gestational age of the foetus was 27+5 weeks and

no complications were present. The mother had signed an

informed consent. The ECG recordings were preprocessed by

suppressing powerline interference using a fourth-order But-

terworth notch filter centered around 50 Hz and suppressing

the ECG of the mother using an adaptive template subtraction

6494



0 1 2 3 4
Time (s)

(a)

0 1 2 3 4
Time (s)

(b)

0 1 2 3 4
Time (s)

(c)

Fig. 3. The three ECG source signals (top graphs) depicted together with their estimates by the developed source separation (middle graph), and by
FastICA (bottom graph).

Fig. 4. The top graphs shows the fetal ECG source signals estimated with
the developed source separation. The bottom graph shows the fetal ECG
source signal estimated with FastICA. The triangles indicate detected fetal
QRS complexes.

technique described in [9].

In Fig. 4 a fragment of 4 seconds long is shown for the

fetal ECG source signals estimated by the developed method

and by FastICA. Selection of the fetal ECG source signal

was made based on visual inspection. It has to be noted here

that in none of the source signals from FastICA a fetal ECG

could be distinguished. To depict a source signal anyhow, the

source signal was used that exhibited the largest correlation

with the source signal estimated by the developed method.

It has to be noted here that, due to the presence of various

other significant sources/interferences, only one fetal ECG

source signal could be extracted from the abdominal ECG

recording.

V. DISCUSSION & CONCLUSIONS

In this paper a source separation technique for ECG signals

was developed that exploits prior knowledge on the signal

mixing. When critically examining the presented iterative

solution to the source separation problem, it shows that the

developed technique is similar to the Bell-Sejnowski [2]

ICA approach, but with a correction in every iteration. This

correction pushes the separation matrix W towards the phys-

iological model. The confidence in this physiological model,

quantified in the variance σ2, is hence an important factor

in the degree of correction. Little confidence, expressed by

a large σ2 causes the method to act as BSS technique with

little to none pushing towards the physiological model. More

confidence, on the other hand, leads to a technique that

is more governed by the physiological model. The choice

for σ2 should hence be made based on the expectation

that the electrode positions are determined correctly and the

recorded ECG data conforms to the ECG model of Sec. II.

In this paper, σ2
i j was set to 50% of the mean variance of

the recorded signals (i.e. the mean of the variances of the

individual recorded signals) for all i and j.

With respect to FastICA, the developed method performs

better in retrieving the ECG sources in simulated data. In

addition, based on visual analysis the developed method

also performs better for real ECG data. More extensive

evaluation of the developed method is however required to

conclusively state about its performance in cases of poorly

determined electrode positions, even lower signal quality, etc.

This extensive evaluation will be subject of further studies,

as is the choice for the variance σ2.
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