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Abstract² Regular exercise and physical activity are among 

the most important factors influencing the quality of life and 

make a significant contribution to the maintenance of health 

and well-being. The assessment of physical activity via 

accelerometry has become a promising technique often used as 

means to objectively measure physical activity. This work 

proposes a simple and reliable method to assess human 

physical activity and calculate the energy expenditure (EE) by 

using an acceleration and an air pressure sensor. Our proposed 

algorithm differentiates between 7 activities with an average 

accuracy of 98.2% and estimates the second by second EE with 

an average percent error of 1.59 ± 8.20% using a single 

PHDVXUHPHQW�XQLW�DWWDFKHG�WR�WKH�VXEMHFW¶V�KLS� 

I. INTRODUCTION 

Physical activity classification and energy expenditure 
(EE) measurement and analysis have been in the past fifteen 
years a very motivating research field with various 
applications in the medical research such as therapeutic 
rehabilitation and disease prevention. Due to the limited 
accuracy of methods like questionnaires and the 
obtrusiveness of methods like indirect calorimetry, 
accelerometry has become a promising widely used 
technique to assess everyday life physical activity.  

Most of the up to now developed algorithms used single 
or combinations of accelerometers attached to different body 
ORFDWLRQV� VXFK� DV� KLS�� WKLJK� RU� IRRW� WR� FODVVLI\� SHRSOHV¶�
everyday life physical activity [1-3]. However, single 
accelerometry has been insufficient to classify activities 
which include vertical movements such as walking up- or 
down-hill even though stair climbing requires more than 
twice the energy of level walking. This limitation can be 
overcome by using an additional air pressure sensor. 

Rulsch et al. [4] proposed a lightweight approach for 
activity classification using both acceleration and air pressure 
signals but no EE prediction algorithm, which depicts the 
intensity of the activity, was presented.  
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Ohtaki et al. [5] classified the physical activity and 
estimated the EE using a single device consisting of an 
acceleration and an air pressure sensor. However, no results 
concerning the classification rates were shown and no 
comparison between the predicted EE and the gold-standard 
was performed.  

An activity-based EE estimation procedure based only on 
accelerometry was presented by Jatobá et al. [6]. The EE 
prediction equations were developed by using the intensity of 
the acceleration measured on the chest and on the left ankle 
along with some other subject-related features (such as age, 
weight, height). 

Yamazaki et al. [7] and Voleno et al. [8] proposed an EE 
estimation model based on accelerometer and barometer data. 
No activity recognition algorithm was presented and the 
activity-independent estimation model did not include 
subject-related data, thus providing a limited accuracy.  

This paper presents a novel method, which accurately 
classifies the physical activity and predicts the EE RI�SHRSOH¶V�
everyday life with an accelerometer and a barometer. 

II. MEASUREMENT SETUP AND DATA COLLECTION 

A. Measurement System 

The collection of the acceleration and the air pressure 
data was done using the Move II sensor (movisens GmbH, 
Karlsruhe, Germany). The data acquisition device consists of 
a three-axial acceleration sensor (adxl345, Analog Devices) 
with a range of ±8 g and a sampling frequency of 128 Hz and 
an air pressure sensor (BMP085, Bosch GmbH) with a 
resolution of 0.03 hPa (corresponding to 15 cm at sea level) 
and a sampling frequency of 8 Hz. The recorded acceleration 
and air pressure raw data are saved on a micro SD card. The 
transmission of raw data after a complete measurement is 
realized by a USB 2.0 interface.  

The portable indirect calorimeter Meta Max 3B (Cortex 
Biophysics GmbH, Leipzig, Germany) was used to assess the 
energy expenditure. The indirect calorimeter measures the 
breath by breath CO2 expiration and O2 consumption; from 
which the energy expenditure can be derived.  

B. Subject Characteristics  

Thirty-six healthy subjects (24 male and 12 female), 
students and employees of the Karlsruhe Institute of 
Technology (KIT) participated in the data collection studies. 
All participants completed an informed consent form prior to 
enrolling in the study. Descriptive data of the subjects is 
presented in Table I. 
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TABLE I.  PHYSICAL CHARACTERISTICS OF SUBJECTS (MEAN ± SD) 

Subject parameter Males  

(N=24) 

Females  

(N=12) 

All subjects  

(N=36) 

Age (yrs.) 31.63 ± 9.67 31.58 ± 8.99 31.61 ± 9.46 

Height (m) 1.79 ± 0.07 1.67 ± 0.04 1.75 ± 0.08 

Weight (kg) 82.70 ± 12.06 65.58 ± 9.60 76.99 ± 13.99 

BMI (kg · m-2) 25.83 ± 3.04 23.43 ± 3.24 25.03  3.31 

C. Measurement Procedure 

Each subject was equipped with the activity sensor Move 
,,�� DWWDFKHG� WR� WKH� SDUWLFLSDQW¶V�ZDLVW� RYHU� WKH� ULJKW� DQWHULRU�
axillary line and the indirect calorimeter. The indirect 
calorimeter was both used to assess the reference data for the 
EE and to set the start and stop markers for the different 
activities.  

For the data collection two different studies with a variety 
of indoor (e.g. walking in treadmill) and outdoor (e.g. 
cycling) predefined activities have been carried out. The data 
collection protocol for the first (N=16) and the second 
(N=20) study can be seen in Table II and III respectively.   

TABLE II.  FIRST STUDY-DATA COLLECTION PROTOCOL 

Activity Duration 

lying (2 times) 2 min 

sitting (2 times) 2 min 

standing (2 times) 2 min 

walking slow in treadmill 3 min 

walking fast in treadmill 3 min 

jogging in treadmill 3 min 

walking slow 3 min 

walking fast 3 min 

jogging 3 min 

cycling app. 5 min 

walking up- /downhill (2 times) app. 4 min 

walking stairs up/ down app. 2 min 

TABLE III.  SECOND STUDY -DATA COLLECTION PROTOCOL 

Activity Duration  

sitting 5 min 

standing 5 min 

walking slow app. 5 min 

walking fast app. 5 min 

jogging app. 5 min 

cycling app. 5 min 

walking up- /downhill (4 times) app. 8 min 

walking stairs up/ down (3 times) app. 6 min 

III. SIGNAL PROCESSING 

A. Signal Preprocessing 

The following signal processing has been done with 
MATLAB. Both the acceleration and the air pressure signals 
were preprocessed and segmented in intervals of 4 seconds.  

The acceleration sensor can measure both movement and 
posture. Therefore the AC (dynamic) and the DC (static) 
parts of the acceleration were separated by subtracting the 
mean value of the signal. The air pressure signal was 
converted into altitude using the barometric formula [9]. To 
suppress noise that is not relevant to the vertical movements a 
Butterworth lowpass filter [4] with cutoff frequency 0.2 Hz 
was used. 

The output signal from the indirect calorimeter was 
characterized by a non-uniform sampling frequency since it 
was sampled at every breath. Therefore, linear interpolation 
was used in order to resample to a uniform 1 Hz sampling 
frequency. 

B. Parameter Extraction 

Each interval (4 sec) of the acceleration and the air 

pressure data was transformed into a feature vector. The 

feature vector was the input for the activity recognition and 

the EE estimation. In the following, the vectors axAC(i), 

ayAC(i) and azAC(i) stand for the AC parts of the ax, ay and 

az-acceleration during the ith interval, whereas axDC(i), 

ayDC(i) and azDC(i) for the DC parts. The features extracted 

are the following:  

Acceleration magnitude (EEAC): The mean of the total 

acceleration represents the intensity of the movement in this 

interval and was used to distinguish between periods of 

activity (e.g. walking) and inactivity (e.g. sitting). A 

threshold between activity and inactivity according to [4] was 

selected. The acceleration magnitude was calculated as: 

EEAC(i) = mean(sqrt(axAC
2(i) + ayAC

2(i) + azAC
2(i))) (1) 

Acceleration variance (VAR): The variance of the total 

acceleration is a measure of how widely the acceleration 

signals fluctuate from their mean values and was used to 

separate less dynamic (e.g. walking) from more dynamic (e.g. 

jogging) activities. The variance of the total acceleration was 

calculated as: 

VAR(i) = var(sqrt(axAC
2(i) + ayAC

2(i) + azAC
2(i))) (2) 

Step count: Using the magnitude of the acceleration per 

sample, the number of steps in every interval was calculated. 

The step detection was performed by using a peak-detection 

algorithm. Fig. 1 illustrates the detection of steps. 
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Figure 1.  Step detection algorithm 

Peak frequency (fmax): If the person was active the 

frequency of the strongest Fourier component of the 

magnitude of the acceleration signal was calculated as 

following: 

 
(3) 
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TABLE IV.  THE RESULTS OF THE ACTIVITY CLASSIFICATION 

 Lying Rest Cycling Uphill Jogging Downhill Walking Sensitivity 

Lying 3648 s 124 s 0 0 0 0 0 96.7% 

Rest 16 s 19388 s 0 0 0 0 0 99.9% 

Cycling 0 116 s 9076 s 0 0 0 356 s 95.1% 

Uphill 0 0 28 s 3752 s 0 0 64 s 97.6% 

Jogging 0 0 12 s 0 8528 s 0 36 s 99.4% 

Downhill 0 4 s 0 0 0 3212 s 32 s 98.9% 

Walking 0 16 s 12 s 0 8 s 0 16208 s 99.8% 

Pos. prediction 99.6% 98.7% 99.4% 100.0% 99.9% 100.0% 97.1%  

 

The validation of the EE prediction models was 
performed by using the leave-one-subject-out cross 
validation. Using this method the generalization of the 
models can be tested. In our approach we first separated the 
data in 2 groups according to the gender and then we 
performed the cross validation. The difference between the 
output from the indirect calorimeter and the prediction of the 
EE was computed for each subject and each activity.  

Table V shows the results of the second-by-second 
estimation of EE using the rms error (RMSE) and the percent 
error for each activity and over the whole duration of the 
protocol (including the time to reach the steady state). The 
mean value of the RMSE for all the activities is 1.19 ± 0.37 
[kcal/min]. The biggest prediction error is observed for the 
cycling activity, this is both due to the fact that cycling was 
sometimes falsely recognized as rest or walking and due to 
the position of the sensor, which was not always able to 
detect the intensity of the movement. Fig. 3 shows a sample 
plot of the EE measured with the portable indirect calorimeter 
and the estimated values for one subject. 

TABLE V.  PREDICTION ERRORS (MEAN ± SD) FOR THE ENERGY 

EXPENDITURE 

Activity RMSE [kcal/min] Percent error [%] 

Lying/ Rest 0.38 ± 0.15 -3.15 ± 13.63 

Walking 0.85 ± 0.41 -3.90 ± 14.71 

Jogging 1.31 ± 0.68 2.82 ± 10.44 

Cycling 1.43 ± 1.05 4.48 ± 19.46 

Walking up-/downhill 0.87 ± 0.32 -3.06 ± 9.40 

Walking upstairs 1.05 ± 0.53 0.27 ± 14.76 

All activities 1.19 ± 0.37 1.59 ± 8.20 
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Figure 3.   Energy expenditure. The black line is the estimated energy 

expenditure and the gray line is the gold standard measure obtained by the 

portable indirect calorimeter. 

V. CONCLUSION 

An algorithm for activity recognition and EE estimation 
was presented and evaluated. The results from the activity 
classification are very satisfactory but should be tested under 
real life conditions and for longer time periods. The results 
achieved by the EE estimation are of rather good quality as 
well, but the performance of the algorithm should be further 
tested for other daily living activities (e.g. household) and 
other populations (e.g. elderly people, children) in order to 
optimize the model parameters for the EE estimation. 
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