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Abstract— The input-output (IO) curve of cortical neuron
populations is a key measure of neural excitability and is related
to other response measures including the motor threshold
which is widely used for individualization of neurostimulation
techniques, such as transcranial magnetic stimulation (TMS).
The IO curve parameters provide biomarkers for changes in
the state of the target neural population that could result from
neurostimulation, pharmacological interventions, or neurologi-
cal and psychiatric conditions. Conventional analyses of IO data
assume a sigmoidal shape with additive Gaussian scattering
that allows simple regression modeling. However, careful study
of the IO curve characteristics reveals that simple additive
noise does not account for the observed IO variability. We
propose a consistent model that adds a second source of intrinsic
variability on the input side of the IO response. We develop
an appropriate mathematical method for calibrating this new
nonlinear model. Finally, the modeling framework is applied
to a representative IO data set. With this modeling approach,
previously inexplicable stochastic behavior becomes obvious.
This work could lead to improved algorithms for estimation of
various excitability parameters including established measures
such as the motor threshold and the IO slope, as well as novel
measures relating to the variability characteristics of the IO
response that could provide additional insight into the state of
the targeted neural population.

I. INTRODUCTION

A key measure for characterizing the dose–response of

brain stimulation methods, such as transcranial magnetic

stimulation (TMS), is the input–output (IO) curve which

describes the relationship of the peripheral motor response to

the cortical stimulus strength [1]–[9]. Various other measures

and procedures are derived from this relationship, e.g., the

motor threshold [10]. The IO curve is an important detection

measure, for example, for analyzing changes of cortical

excitability [4], [9]. Furthermore, the motor threshold is

commonly used for individualizing TMS in research and

clinical applications to ensure effective and safe stimulus

intensity [11].

However, single motor responses are highly fluctuating

due to neural variability, and so is the whole IO curve

[12]–[17]. Therefore, regression techniques, commonly least-

squares fitting, are used for extracting characteristics from

the variable IO data points (see, e.g., [1], [3], [8]).

The cortical stimulus–response behavior is still not well

understood and the sources of variability are not known,

although many possible mechanisms have been analyzed,
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including summation due to the electromyographic (EMG)

electrode size [18]. Nevertheless, observations of IO data

coupled with basic understanding of the behavior of neural

ensembles could suggest appropriate modeling approaches.

The stochastic properties of the response are important for

choosing a method for a regression or other description of

individual characteristics. Incorrect incorporation of ‘errors’

in a regression could lead to inaccurate parameter estimation.

Statistical analysis of motor responses has shown that they

exhibit most likely a multiplicative variability [19] which

leads to a more consistent definition of the IO curve as the

logarithm of the peak-to-peak voltage amplitude as a function

of the stimulation strength. This approach reduces markedly

the unaccountable variability and is adopted in our modeling

method. However, even with logarithmic normalization of

the IO data, the distribution of responses varies significantly

depending on the stimulus amplitude (i.e., the position along

the IO curve). Unfortunately, this fact is often ignored,

resulting in potentially inaccurate IO parameter estimation.

To address these limitations, we propose a model of

characterizing IO curve data that—in addition to the additive

error assumed in standard curve-regression techniques—

incorporates variability of the neural excitability before the

dominant nonlinearity of the system. In other words, we

consider stochastic error not only at the output of the neural

circuit but also at the input.

A clear mathematical treatment of this concept of neural

response including both input and output variability could

provide neurophysiologic and biophysical insights that are

otherwise obscured. The mathematical formulation is similar

to a measurement problem where the input and output

measurements of a system are noisy [20], although the

underlying problem here is different: In brain stimulation, the

stimulus amplitude is accurately known, but the sensitivity

or excitability of the stimulated neurons incorporates a

stochastic term. In contrast to most engineering problems

where distinct error sources at the input and output can be

analyzed by separate readout, there is no independent access

to the different variability mechanisms in the brain.

We propose a relatively simple but mathematically con-

sistent framework for solving the problem and use several

advantages of the special case of IO curves that lead to a

robust parameter estimation approach for neurophysiology.

II. APPROACH

A. PROBLEM ANALYSIS

The structure of the problem is depicted in Fig. 1. The

stimulus with strength x depolarizes the target neuron pop-

ulation. The degree of neural activation resulting from the
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Fig. 1. Block diagram of an input-output (IO) response model. Variable x
is the stimulus amplitude, S is the sigmoidal neural population recruitment
characteristic, and y is the response defined as the logarithm of the peak-to-
peak electromyographic (EMG) amplitude. Independent stochastic variables
vx and vy with their density functions gvx and gvy model variability before
and after the sigmoidal nonlinearity, respectively. Variables x̃ and ỹ are the
input and output of the sigmoid characteristic module S, respectively.

stimulus is perturbed by a stochastic component vx. This

variability may be due to short-term fluctuations of the

excitability of a neuron which leads to a changing threshold.

Input fluctuations may also result from variability in the coil

position to which TMS is very sensitive. The sigmoid transfer

characteristics S represents the neural population recruitment.

The variability vy at the output of S is the conventional

noise source assumed in IO modeling, which may result

from fluctuations in the spinal pathway and the two synapses

leading to the muscle cells, as well as EMG amplifier noise.

Statistical information about the stochastic terms vx and vy
is unknown and has to be estimated from IO data.

B. MATHEMATICAL FRAMEWORK

For linear systems, a number of methods can be applied

for the analysis, such as total least squares regression. In the

case of nonlinear systems, on the other hand, methods are

more problem-specific.

We present an approach that models y stochastically in

distribution with all dependencies on the model parameters

and other influences in forward direction. Since the available

amount of data for an IO curve is usually small, in our exam-

ple we replace all unknown components in the explicit form

of this general analytic formulation in a second step with

parametric representations. The parametric model provides

a full conditional distribution for a pair of corresponding

stimulus and response (x,y) that can be trained subsequently

with standard methods using the available measurements.

In general, this system is not uniquely solvable without

exact knowledge of the factors of influence; the interplay

of two stochastic influences leads to an inverse problem.

The strong nonlinearity of the IO curves, however, allows a

relatively stable separation of both, as shown below. Due to

the changing derivative along the sigmoid, point estimators

and Bayesian methods exhibit a unique minimum of their

objective if the spread of both stochastic processes is not

so high as to ‘wash out’ the maxima and minima of the

sigmoid’s derivative.

For a fixed stimulation amplitude x, the density function

fx̃(x̃) of the effective activation level x̃ is trivially gvx(x̃− x)
where gvx is the distribution of the variability source vx. The
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Fig. 2. Measured TMS IO curve (black crosses) and regression curve with
0.85 and 0.95 variability ranges. The y-axis shows the log-transformed peak-
to-peak EMG response, Vpp, to a TMS stimulus with amplitude given on
the x-axis. The stimulation amplitude is specified as percentage of the peak
capacitor voltage of a Magstim Rapid device; a value of 100 corresponds
to 1.65 kV.

nonlinearity transforms the distribution according to∣∣ fỹ|x
(
S(x̃)

)
dS(x̃)

∣∣ = | fx̃(x̃)dx̃| (1)

= |gvx(x̃− x)dx̃| (2)

where dS = dS(x̃) = dS
dx̃ dx̃ denotes a classical differential. The

second variability source vy interplays with the distribution

of ỹ
∣∣ fy|x(y)dS(x̃)

∣∣ =

∣∣∣∣
∫
R

gvy(χ) · fỹ|x(y−χ|x)dS dχ
∣∣∣∣ (3)

=

∫
R

gvy(χ) ·gvx

(
S−1(y−χ)− x

) |dx̃| dχ

Expression (3) provides a full analytic description of the

output y in distribution dependent on the input x and the other

factors of influence (S, gvx , gvy ). With this basis, the model

can be combined with an appropriate estimation method.

As the samples in IO curves are usually sparse due to the

required long inter-stimulus intervals and limited practical

length of recording sessions, in this paper we describe

a parametric estimation approach. However, this modeling

framework can also be the basis for a nonparametric regres-

sion.

Since this is the first time that motor cortex IO curves

are modeled with the representation in Fig. 1, empirical

information that could act as a prior for a Bayesian approach

is not available. In addition, we do not perform a large

dataset analysis in this paper; consequently, we could not

benefit from statistical properties of the posterior distribution.

Therefore, we keep the example simple and use a standard

likelihood point estimator [21].

For parametrized distributions gvx and gvy with respective

parameter vectors p1, as well as p2 and the sigmoidal

function S with parameters p3, the likelihood is

L = p(y|x,p) = ∏
i

fy (yi|xi,p) . (4)
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Fig. 3. Comparison of the distributions of the total variability in y at
different levels of x. The black bars represent the measured values of the
IO curve. The estimated density function in y (red) shows clearly the known
phenomenon that the distribution has varying spread and skewness along the
IO curve.

The parameters and all single IO samples (xi,yi) are com-

piled to single vectors, p = (p1,p2,p3), x = (xi)i∈1,..,m,

and y = (yi)i∈1,..,m, respectively, where m is the number

of samples. The parameter estimation is performed in the

standard way by maximizing the locally convex logarithm

of the likelihood.

III. EXAMPLE

We demonstrate the performance of the modeling and

estimation method described above with a representative ex-

ample. An IO curve of a healthy volunteer (female, age: 28)

was obtained from an existing dataset [22]. In this recording,

a standard figure-8 TMS coil was used in combination with a

monophasic near-rectangular pulse source with a pulse width

of 60 μs. The peak-to-peak EMG responses, Vpp, were log-

transformed.

The IO recording comprised only 120 sample points.

Therefore, we chose a low-dimensional parametrization of

the density functions in order to avoid a high-variance

problem: Both variability sources are modeled as normally

distributed, with the standard deviations treated as degrees

of freedom. In the case of vy, this represents a multiplicative

log-normal distribution in the raw (not log-transformed) data.

Knowledge of the standard deviations is not required, as they

will be estimated.

The sigmoidal curve S was modeled by a Hill-type func-

tion

S(x̃) = a+
b−a

1+ c
(x̃−e)d

(5)

with parameter vector p3 = (a,b,c,d,e).
The integral in Equation (3) has no analytic solution

for the functions chosen here and is therefore evaluated

Fig. 4. The output distribution fy|x (axis of ordinates) at different input
amplitudes x (axis of abscissae) for the most likely parameter set from the
example IO curve. The distribution shape changes dramatically depending
on the value of x.

numerically. The maximum in the log-likelihood was de-

tected with an ordinary Nelder-Mead iteration [23]. The

resulting regression curve and the 0.95 and 0.85 proba-

bility ranges extracted from the estimated distributions are

plotted in Fig. 2. The variability ranges are extracted from

the estimated model distribution fy|x. The most likely pa-

rameter vector for this IO curve is (a,b,c,d,e,σx,σy) =
(−2.02,0.592,143,2.44,50.2,3.04,0.0793), where σx and

σy are the standard deviations of the variability sources

vx and vy, respectively. For comparison, a standard re-

gression with variability contributed solely by vy leads

to a notably different parameter set, (a,b,c,d,e,σx,σy) =
(−2.03,0.687,77.8,1.98,48.3,0,0.271).

Figure 3 compares the distortion of the output distribution

at various stimulation amplitudes x between the measurement

and the model. Fig. 4 depicts the estimated distributions in

more detail. The model indeed predicts the skewed, shifting

distributions seen in the experimental data.

As seen in Figures 2–4, in the transition region between

the IO curve plateaus, the distribution of the measured data

in y for a given x is highly skewed, but the skewness

shifts: on the left side of the midpoint it is skewed towards

higher values, whereas on the right side it is skewed towards

lower values. Considering a traditional framework with vy
as the sole variability mechanism, the accumulation points

on the regression curve are challenged by outliers resulting

from the skewed distributions. Without considering vx in

the regression, the y-variability is overrated and the slope is

underestimated due to the apparent outliers resulting from the

skewed and variable output distributions. The misestimation

of the slope accumulates errors in properties that are derived

from the curve. For example, the motor threshold is system-

atically underestimated in comparison with a local median-

based definition. Furthermore the problem is unnecessarily

heteroscedastic; although this is rarely taken into considera-

tion when choosing an appropriate regression method.

On the other hand, considering our model with both vx and

vy variability sources, the behavior of the output distribution

becomes easily explainable by a normally distributed vx
transformed by the nonlinearity S. The input-side stochastic

source, vx, dominates the variability in the transition between

6436



the saturation levels (the ‘slope region’ of the IO curve),

while the output-side stochastic source, vy, dominates the

variability in the saturation regions.

Finally, due to the dominating role of vx in the transition

region of the IO curve, a regression of the inverse function (x
in dependence of y) with a standard least-squares regression

and assumed variability on the x-side only would be a

much better approach for the transition region if the full

model presented here cannot be used for some reason. This

approach would reduce the underestimation of the slope in

that domain.

IV. Conclusions

The proposed model reduces the unaccountable variability

in IO curves to a greater extent than existing models by

incorporating a stochastic component that acts directly on

the excitability of the activation site. This stochastic behavior

at the neural system input appears at the output after being

transformed by the strong sigmoid nonlinearity characteristic

of the IO curve. We believe that this model is not just a

descriptive artifice to fit the data, but could also provide

insight into the structure of the system under study.

The stochastic input component has not been recognized

previously even in detailed studies with sophisticated ex-

perimental methods (see, e.g., [15]). One reason may be

that many analyses were performed at single, isolated stim-

ulation amplitudes which obscures the different response

distributions at various stimulation levels. In some studies,

data at different stimulation levels that should have been

treated separately due to their distinct distributions were even

combined in the analysis. In addition, the fact that the TMS

stimulator output can be very accurately controlled may have

resulted in the misconception that the input is stable without

considering inherent neural sources of variability.

This paper focused on defining a consistent model and a

mathematical framework that can be used to calibrate the

model. To further demonstrate the validity and utility of

the model, it should be used on IO data from a sufficient

subject pool representing a cross section of the general

population. The proposed modeling framework could benefit

the formulation of various procedures, methods, and tools

for analyzing data, detecting neuromodulatory effects, and

determining individual response thresholds in brain stimula-

tion.
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[2] C. Möller, N. Arai, J. Lücke, and U. Ziemann. Hysteresis effects on
the input-output curve of motor evoked potentials. Clinical Neurophys-
iology, vol. 120, pp. 1003–1008, 2009.

[3] A.A. van Kuijk, L.C. Anker, J.W. Pasman, J.C.M. Hendriks, G. van
Elswijk, A.C.H. Geurts. Stimulus-response characteristics of motor
evoked potentials and silent periods in proximal and distal upper-
extremity muscles. Hournal of Electromyography and Kinesiology,
vol. 19, pp. 574–583, 2009.

[4] E. Hoyader, A. Degardin, F. Cassim, P. Bocquillon, P. Derambure, and
H. Devanne. The effects of low- and high-frequency repetitive TMS
on the input/output properties of the human corticospinal pathway.
Experimental Brain Research, vol. 187, pp. 207–217, 2008.

[5] E.M. Wassermann. Variation in the response to transcranial magnetic
brain stimulation in the general population. Clinical Neurophysiology,
vol. 113, pp. 1165–1171, 2002.

[6] B. Boroojerdi, F. Battaglia, W. Muehlbacher, and L.G. Cohen. Mech-
anisms influencing stimulus-response properties of the human corti-
cospinal system. Clinical Neurophysiology. vol. 112, pp. 931–937,
2001.

[7] L. Niehaus, B.-U. Meyer, T. Weyh. Influence of pulse configuration
and direction of coil current on excitatory effects of magnetic motor
cortex and nerve stimulation. Clinical Neurophysiology, vol. 111, no.
1, pp. 75–80, 2000.

[8] H. Devanne, B.A. Lavoie, and C. Capaday. Input-output properties and
gain changes in the human corticospinal pathway. Experimental Brain
Research, vol. 114, pp. 329–338, 1997.

[9] M.C. Ridding, J.C. Rothwell. Stimulus/response curves as a method of
measuring motor cortical excitability in man. Electroencephalography
and Clinical Neurophysiology, vol. 105, pp. 340–344, 1997.

[10] P.M. Rossini et al. Non-invasive electrical and magnetic stimulation
of the brain, spinal cord and roots: basic principles and procedures
for routine clinical application. Report of an IFCN committee. Elec-
troencephalography and Clinical Neurophysiology, vol. 91, pp. 79–92,
1994.

[11] S. Rossi, et al. Safety, ethical considerations, and application guide-
lines for the use of transcranial magnetic stimulation in clinical
practice and research. Clinical Neurophysiology, vol. 120, no. 12, pp.
2008–2039, 2009.

[12] P. Pasqualetti, F. Ferreri. Amplitude values of motor evoked potentials:
statistical properties and neurophysiological implications. Clinical
Neurophysiology Supplement, vol. 122, S44–S45, 2011.

[13] K.R. Choudhury, L. Boyle, M. Burke, W. Lombard, S. Ryan, B. Mc-
Namara. Intra subject variation and correlation of motor potentials
evoked by transcranial magnetic stimulation. Irish Journal of Medical
Science, vol. 180, no. 4, pp. 873–880, 2011.

[14] N.H. Jung, I. Delvendahl, N.G. Kuhnke, D. Hauschke, S. Stolle, and
V. Mall. Navigated transcranial magnetic stimulation does not decrease
the variability of motor-evoked potentials. Brain Stimulation, vol. 3,
pp. 87–94, 2010.

[15] K.M. Rösler, D.M. Roth, and M.R. Magistris. Trial-to-trial size vari-
ability of motor-evoke potentials. A study using the triple stimulation
technique. Experimental Brain Research, vol. 187, pp. 51–59, 2008.

[16] D. Burke, R. Hicks, J. Stephen, I. Woodforth, and M. Crawford.
Trial-to-trial variability of corticospinal volleys in human subjects.
Electroencephalography and Clinical Neurophysiology, vol. 97, pp.
231–237, 1995.

[17] L. Kiers, D. Cros, K.H. Chiappa, and J. Fang. Variability of motor
potentials evoked by transcranial magnetic stimulation. Electroen-
cephalography and Clinical Neurophysiology, vol. 89, pp. 415–423,
1993.

[18] R.J.W. Dunneworld, W. van der Kamp, A.M. van den Brink,
M.S. Reegt, and G. van Dijk. Influence of electrode site and size on
variability of magnetic evoked potentials. Muscle & Nerve, vol. 21,
no. 12, 1779–1782.

[19] J.F. Nielsen. Logarithmic distribution of amplitudes of compound
muscle action potentials evoked by transcranial magnetic stimulation.
Journal of Clinical Neurophysiology, vol. 13, no. 5, pp. 423–434.

[20] L.A. Stefanski. Measurement error models. Journal of the American
Statistical Association, vol. 95, no. 452, pp. 1353–1358.

[21] R.A. Fisher. On the mathematical foundations of theoretical statistics.
Philosophical Transactions of the Royal Society of London A, vol.
222, pp. 309–368, 1922.

[22] A.V. Peterchev, G.G. Westin, B. Luber, and S.H. Lisanby. Corti-
cospinal response characterization with controllable pulse parameter
transcranial magnetic stimulation (cTMS). Clinical Neurophysiology
Supplement, vol. 122, pp. S191, 2011.

[23] J.A. Nelder, R. Mead. A simplex method for function minimization.
The Computer Journal, vol. 7, no. 4, pp. 308–313, 1965.

6437


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

