
  

 

Abstract—Decoding grasp types instead of individual finger 

kinematics from neural signals is an efficient way for prosthetic 

hand control in brain machine interfaces (BMIs). However, 

current grasp type decoding mainly depends on a synchronous 

way, i.e. the decoding has to be triggered by external events such 

as movement onset, making it less practical for BMI 

applications. This paper presents our work on asynchronous 

decoding of four grasp types and a resting state using neural 

ensemble signals from the primary and premotor cortex of a 

monkey. A fuzzy k-nearest neighbor and finite state machine 

were employed to continuously predict the movement states and 

onset timing of the hand motion when monkey grasping one of 

four different objects with specific gestures. Sample-wise and 

event-wise analyses were conducted to evaluate the performance 

of the system. The results demonstrate that it is possible to 

asynchronously decode grasp movement with a high accuracy, 

suggesting its potential application in practical BMIs. 

I. INTRODUCTION 

The loss of the hand results in a serious reduction of the 
functional autonomy of a person in his daily living. In past 
decades, brain machine interfaces (BMIs) have provided a 
new hope for restoring motor functions of the severely 
disabled through controlling prostheses (e.g. robotic arm, 
screen cursor, etc.) with intentional commands extracted from 
brain signals [1, 2]. With the development of understanding 
how reach and grasp movements are encoded in distinct brain 
regions (for a latest review, see [3]), recent studies have paid 
attentions to the more sophisticated hand movement 
restorations by decoding distinct grasp types from cortical 
signals. Grasp types were classified successfully from 
multiunit activity (MUA) in dorsal and ventral premotor (PMd 
and PMv) [4], single neuron recording in PMv [5], multiple 
units in PMv and anterior intraparietal (AIP) [6], and even 
human Electrocorticographic (ECoG) [7] previously. These 
works, classifying finger configurations into one of the 
predefined categories based on the kinematic synergy 
movement in grasping, reduce the burden of the decoding 
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system dramatically compared with continuous kinematic 
modeling. 

Current decoding, however, always operated in a so-called 
synchronous or cue-based mode, in which human intervention 
is required to notify the decoder when it is appropriate to 
decode. The system used a priori knowledge of the movement 
events, which is not available in practical neuroprosthetic 
control [8]. In contrast, an asynchronous BMI, working in 
functional autonomous mode, decodes the continuous signal 
and gives out the results every moment depending on the 
subject’s cognitive state [9]. Although this had not been 
applied to grasp decoding, there is some relevant work in the 
BMI field. Townsend et al. used asynchronous decoding to 
analyze continuous EEG data during right/left motor imagery, 
and introduced a resting states corresponding to non-intended 
activity [10]. Hasan et al. temporal modeled the EEG during 
self-paced hand movement, which are further used for 
building an onset detection system [11]. Kemere et al. detected 
the neural-state transitions among base-line, plan, and 
perimovement epochs of neural activity using hidden Markov 
models [12]. 

In this study, we obtained neural data from the primary 
motor and dorsal premotor cortices (M1 and PMd) of a 
monkey and decoded four grasp types and a resting state 
asynchronously for neural prosthetic control. Both 
sample-wise and event-wise analyses show that the movement 
states and movement onset timing can be classified accurately 
solely based on neural data without non-neural cue. 

II. MATERIALS AND METHODS 

A. Experimental setup 

We trained a male macaque monkey to reach and grasp 
four differently shaped objects using the right hand with 
different types of grasp. As illustrated in Fig. 1A, the four 
objects were fixed and randomly arranged in a two-by-two 
matrix on a transparent plexiglass board, which was located 
vertically in front of the animal at the chest level. The distance 
from the board to the eye of the animal was ~50 cm. An LCD 
monitor was mounted behind the board to illuminate one of 
the objects as the target for grasp. As shown in Fig. 1B, the 
four objects used in the task include a cylinder, a rectangle 
plate, a cone and a ring. Each object is small enough to be held 
in one hand of the monkey with a distinct grasp type. 
Specifically, the grasp types for the four objects are: heavy 
wrap for the cylinder, primitive precision for the plate, lateral 
grip for the cone and two-finger hook grip for the ring. 

The monkey was seated in a primate chair with his head 

fixed and right arm resting on clapboard. As shown in Fig. 1C, 

a trial was initiated after one of the objects was randomly 
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illuminated by the light projected from the background screen 

(hereafter refer to Light ON). In each trial, the monkey was 

required to reach and grasp the object within 600 ms, and hold 

it for 3 to 4 seconds until the background screen light was 

turned off (hereafter refer to Light OFF). The monkey 

released the object and withdrew the hand to the rest position. 

A trial was considered successful if the monkey grasped the 

object in the intended sequence and grip type, and then 

several drops of water were rewarded to the animal manually. 

Several blocks (10 minutes each block, including ~50 trials) 

were conducted in one session, with a few minutes break 

between blocks. Hand and arm movement was also recorded 

using an infrared camera. 

 
Figure 1.  Experimental setup and task. (A) The top view of the 

experimental setup when monkey was grasping the plate. (B) The four target 

objects: cylinder, plate, cone and ring. (C) The time sequence of a single trial. 

B. Neural recordings and preprocessing 

Neural data was collected from two Utah microelectrode 
arrays (Blackrock, 96 channels) chronically implanted in the 
hand area of primary motor cortex (M1) and dorsal premotor 
cortex (PMd) contralateral to the hand performing the task. 
Surgical procedure was similar to those described in [13]. All 
experimental procedures in this study conformed to the Guide 
for the Care and Use of Laboratory Animals (China Ministry 
of Health) and were approved by the Animal Care Committee 
at Zhejiang University, China. 

Continuous neural activities were recorded from the first 
64 channels (out of 96) from each array in M1 and PMd using 
a 128-channel Cerebus Data Acquisition system (Blackrock, 
USA). Signal from each channel was amplified, analog 
filtered (Butterworth bandpass, 0.3-7500 Hz), digitized (14 bit 
resolution, 30 kHz sample) and digitally filtered (Butterworth 
highpass at 250 Hz). Spike activities were detected from the 
filtered signal using the thresholding method at a level of -5.5 
times the root mean square (RMS) of signal baseline. Online 
spike sorting was conducted using template labeled with hoop 
method. Event timing, including trial start, Light ON, Light 
OFF, trial end and reward, were also recorded via the digital 
input port of the system synchronously. These data were 
stored on disk for offline analysis. 

C.   Decoding method and control strategy 

The numbers of spikes for each sorted unit were counted in 
100 ms bins across the entire trial, which results in the neural 

vectors along the grasp movement. The time course of whole 
movement was first labeled as Grasp state and Rest state, 
roughly corresponding to the periods between and beyond 
Light ON and Light OFF event, respectively. The Grasp state 
was further classified as four types of grip according to the 
object grasped. Fuzzy k-nearest neighbors (FKNN) was used 
to classify the five movement states continuously in this 
application [14]. Given a training set D = [y1, y2, … yn] with n 
labeled samples and a test neural vector z related to one of the 
five states with unknown class label, the algorithm computes 
the distance between z and all the training samples to 
determine its k nearest-neighbor list. It then assigns a fuzzy 
membership vector (FMV) to the testing vector. The FMV is 
defined as M = [m1, m2, … mL], where L is the number of 
classes and mi denotes the membership to the i-th class, i.e. 
class(i). mi is calculated as: 
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Then the unlabeled vector z will be classified into class(i), 
where mi is the maximum value within the FMV.  

We calculated the labels (i.e., movement states) in each 
trial bin by bin along the whole time course of grasp. A finite 
state machine (FSM) was designed in this application which 
can convert the output labels of the FKNN classifier to the 
primitive prosthetic hand control commands asynchronously. 
For stable and smooth operation of the control, we designed a 
set of state transition polices. First, if no membership 
predicted from FKNN was above a predefined threshold, the 
FSM regarded it as ambiguous and kept the current state 
unchanged. Second, FSM transited to a new state only when 
the classification label of the state was predicted in 5 
consecutive bins. Third, the state cannot transfer from one 
kind of grasp type to another directly; Rest state must be 
inserted, which is also the actual situation. Only when the 
output state of the FSM changed, the command of grasping or 
releasing was sent. In practice, the FSM output was smoother 
than the FKNN output, and the former was used for further 
analysis and statistics. 

III. RESULTS 

The goal of this work is to discriminate different 
movement states asynchronously along the time course of 
reach and grasp. Monkey was trained to grasp one of the 
objects when the corresponding light is on and release it when 
the light is off. A total of 128-channel neural signals in M1 and 
PMd were obtained from 10 sessions over a period of one 
month. After sorting, we isolated an average of 73 units per 
session. The performance of the system was evaluated offline 
by several criteria. 

Fig.2 shows some example neurons and their firing rate 
during one session’s reach and grasp time course. ON and 
OFF are corresponding to the event of Light ON and Light 
OFF, respectively. Neuron 113-2 and 53-2 are responsive to 
reach and withdraw movement, regardless of different objects. 
Neuron 86-1 and 91-1 are sensitive to different objects grasp, 
i.e., for different objects they show different firing rate during 
the grasp and hold movement. These tuning properties provide 
the basis of the asynchronous decoding, in which, both reach 
timing and grasp type are predicted. 
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Figure 2.  Example neurons showing different reach grasp tuning property. 

A.  Bin-wise result 

 
Figure 3.  Representative bin by bin decoding results showing actual 

movement sequence and the predicted counterpart in 11 successive trials. 

Representative result of bin-wise decoding, which predicts 
the state of movement from each bin of the neural signals, is 
shown in Fig. 3. The prediction of the FSM is compared with 
actual movement synchronously. The start and end of the four 
objects grasp was calibrated as the event timing of Light ON 
and Light OFF respectively. In the tested trials illustrated, the 
predicted movement followed the actual movement of the 
monkey completely: (i) the four grasp types were predicted 
correctly; (ii) the rest state was also predicted correctly; and 
(iii) the predicted grasping and releasing timing was 
corresponding to the actual movement sequence, only with a 
little delay. To evaluate the bin-wise prediction accuracy 
across all the sessions, receiver operating characteristics (ROC) 
curve was plotted with true positive rate (TPR) against false 
positive rate (FPR) in Fig. 4. The TPR and FPR are defined as: 

)/( FNTPTPTPR  

)/( FPTNFPFPR  

 
Figure 4.  ROC curve generated on a bin by bin comparison of the classifier 

output against the actual movement across all the sessions. 

where TP, FN, TN and FP are the number of true positives, 
false negatives, true negatives and false positives, respectively. 
Here, grasp movements are taken as a positive signal and rest 
state as a negative signal. The averaged TPR and FPR across 
all 10 sessions are 0.54 (standard deviation, SD, 0.17) and 0.07 
(SD, 0.04), respectively. The area below the ROC curve, 
giving a measure about the mean separability in all the 
sessions, was evaluated at a high level of 0.81. The delay 
between actual movement onset and predicted onset was 
evaluated at an average of 587 ms (SD, 237 ms) across all the 
correctly classified trials. The delay was mainly due to the 
policy of using 5 consecutive bins for making a decision. 

 
Figure 5.  Mean F-measure values of the five movement states and the 

comprehensive error rate across all the sessions. 

Additionally, an F-measure (i.e., balanced F-score) is used 
to check the classification performance of the individual 
classes as in [11]. The F-measure for a certain class c is 
defined as the harmonic mean of precision and recall: 
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where TP, FP and FN are defined above. Another quantitative 
measurement is defined as an error function as fellow: 
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where C is the total number of classes (i.e. 5 in this work). The 
error function gives a comprehensive evaluation of F-measure 
under the numbers of classes in term of error rate. Fig. 5 
details the F-measure values of the five movement states, in 
which, the value of Rest states (mean, 0.87; SD, 0.02) is 
significantly higher than other grasp movements (student t-test, 
p < 0.01), showing a classification bias towards Rest states. 
While the other four grasp movement states show a balanced 
performance, indicating that the subject has no preference to 
any objects. The average error defined in (7) was 0.18 (SD, 
0.13), which is a low error indicator for the whole classifier 
system performance. 

B. Event-wise result 

Event-wise decoding predicts the movement state for each 
grasp event, which is defined as a complete period of grasping. 
It is a more practical strategy for real BMI applications than 
bin-wise analysis because a grasping action is usually 
completed without interruption. Here event is defined as one 
grasp in one trial and the rest state is defined as non-event. The 
numbers of true-positive events (TPE) and false-positive 
events (FPE) are counted to measure the performance. Here 
TPE is defined as both grasp and rest states were predicted 
correctly in one trial, i.e., only one continuous period of the 
correct decoding result appeared in each state (single 
detection), and FPE is defined as any artifact grasp movement 
detection in rest periods. A new true-false difference (TF%) is 
defined as the difference in the ratio of TPEs to events and 
FPEs to tests in [10], compared with the traditional true-false 
difference (trTF%): 

EFPETPEtrTF /)(%  

)/(/% FPEEFPEETPETF  

where E is the total number of events (i.e. trials). The TF 
difference will be 1 if there is detection for each event and no 
detections during nonevent. For a detection system with 
random behavior, these two parameters will both be 50%, 
giving a TF difference of zero. The event by event results are 
summarized in Table I. In a total of 651 trials tested, the mean 
TPE and FPE are 584 and 77 respectively, which result in a 
mean TF difference of 0.75 (SD, 0.14). Specially, a total of 
143 (out of 146) trials was predicted correctly and only 6 false 
alarm occurred in session 7, which is also the data used in Fig. 
3. The traditional TF difference gives the similar evaluation. 

TABLE I.  EVENT BY EVENT EVALUATION OF THE SYSTEM 

PERFORMANCE ACROSS ALL THE SESSIONS IN TRUE-FALSE DIFFERENCE 

Session TPEs FPEs Events trTF% TF% 

1 31 8 38 0.61 0.64 

2 56 7 60 0.82 0.83 
3 63 6 63 0.90 0.91 

4 40 4 58 0.62 0.62 

5 24 5 38 0.50 0.52 
6 71 13 71 0.82 0.85 

7 143 6 146 0.94 0.94 

8 74 9 82 0.79 0.80 
9 50 13 54 0.69 0.72 

10 32 6 41 0.63 0.64 

Mean 58.4 7.7 65.1 0.73 0.75 

Std 34.3 3.1 31.8 0.14 0.14 

IV. CONCLUSION AND DISCUSSION  

Asynchronous decoding of monkey reach and grasp 
movement was realized successfully in this study with a high 
accuracy of bin-wise and event-wise evaluation, which means 
that both different movement states and movement onset 
timing were predicted exactly. One of the main limitations in 
this work is that the start and end of the four objects grasp was 
calibrated as the event timing of Light ON and Light OFF 
respectively which may not be equal to the actual onset of 
movement. To precisely detect the onset of the grasp 
movement, an analysis of the video recordings or a marker 
based movement analysis has to be performed.  

The output of the system can be used to control an artificial 
hand or a hand in virtual reality using the shared control 
strategy, i.e. when the output state of the FSM changed, a 
corresponding grasp/release primitive command was sent to 
the hand and the hand will act accordingly. Future work 
includes implementing more movement states such as reach, 
release, drawback, etc. and employing more complicated 
states model to simulate the reach and grasp movements. 
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