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Abstract— Gait impairment due to foot drop is a common
outcome of stroke, and current physiotherapy provides only
limited restoration of gait function. Gait function can also
be aided by orthoses, but these devices may be cumbersome
and their benefits disappear upon removal. Hence, new neuro-
rehabilitative therapies are being sought to generate permanent
improvements in motor function beyond those of conventional
physiotherapies through positive neural plasticity processes.
Here, the authors describe an electroencephalogram (EEG)
based brain-computer interface (BCI) controlled functional
electrical stimulation (FES) system that enabled a stroke subject
with foot drop to re-establish foot dorsiflexion. To this end, a
prediction model was generated from EEG data collected as
the subject alternated between periods of idling and attempted
foot dorsiflexion. This prediction model was then used to classify
online EEG data into either “idling” or “dorsiflexion” states,
and this information was subsequently used to control an FES
device to elicit effective foot dorsiflexion. The performance of
the system was assessed in online sessions, where the subject
was prompted by a computer to alternate between periods of
idling and dorsiflexion. The subject demonstrated purposeful
operation of the BCI-FES system, with an average cross-
correlation between instructional cues and BCI-FES response
of 0.60 over 3 sessions. In addition, analysis of the prediction
model indicated that non-classical brain areas were activated
in the process, suggesting post-stroke cortical re-organization.
In the future, these systems may be explored as a potential
therapeutic tool that can help promote positive plasticity and
neural repair in chronic stroke patients.

I. INTRODUCTION

Approximately 800,000 new stroke cases occur annually in
the United States alone [1]. Advances in acute medical care
have led to increased stroke survival rates, and this trend will
likely continue. However, stroke survivors typically suffer
from permanent motor system deficits that lead to significant
disability. Conventional physiotherapies only provide limited
neurological and motor function recovery, thereby rendering
many stroke survivors dependent on caregivers. The societal
burden of care for these individuals is expected to continue
growing, particularly with increasing world population and
stroke survival rates. Therefore, this situation mandates the
development of novel and effective physiotherapies.
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Given the limitations of current physiotherapies, novel
treatments that promote neural repair and plasticity mech-
anisms to elicit motor function improvements are being
sought [2]. The integration of brain-computer interface (BCI)
and functional electrical stimulation (FES) systems may offer
long-term functional improvements in this population. It can
be hypothesized that such a BCI-FES system may promote
neural repair via Hebbian learning mechanisms (“neurons
that fire together, wire together”), whereby the activation of
post-stroke cortical areas associated with a motor behavior
triggers the electrical stimulation of the corresponding lower
motor neurons (via antidromic stimulation). For example,
Daly et al. [3] recently reported on the development of a
BCI-controlled FES system for hand grasping, which led to
the improvement of hand function in a stroke survivor. This
concept has also been applied to the lower extremities, where
a BCI-FES system was used to control foot dorsiflexion [4].
However, the function of this system has only been tested
in a population of able-bodied subjects. Here, the authors
investigate the potential usability of this BCI-FES system in
chronic stroke survivors with severe foot drop, and report on
its successful demonstration in a single stroke subject.

II. METHODS

A. Overview

A noninvasive electroencephalogram (EEG) based BCI-
FES system for foot dorsiflexion, previously developed by
the authors [4], was tested in a stroke survivor with severe
right foot drop. Briefly, the subject was seated in front of
a computer screen, which provided instructions to alternate
between sitting still (idling) and attempting to dorsiflex the
impaired foot (albeit ineffectively), while EEG was recorded.
EEG signals underlying both states were analyzed to develop
a prediction model that can classify EEG data into either
“idling” or “dorsiflexion” states. In an online test session,
the subject was tasked with operating the BCI-FES system
and generating BCI-FES mediated foot dorsiflexion when
instructed by computer cues. The online performance of
the system was assessed by calculating the cross-correlation
between the decoded BCI-FES states and instructional cues.

B. Training Data Acquisition

Ethical approval to undertake this study was obtained
from the University of California, Irvine Institutional Review
Board. A stroke survivor (male, age 60) with right foot drop
(∼5◦ of residual dorsiflexion) due to chronic left internal
capsule stroke was recruited to participate in the study.
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The subject first underwent placement of a 64-channel
EEG cap (MediFactory BV, Heerlen, the Netherlands). Con-
ductive gel was applied to all electrodes and impedances
were maintained at <10 KΩ by abrading the scalp with
a blunt needle. The subject was then seated in front of a
computer screen and directed by automated textual cues to
alternate between idling (sitting still) and attempted foot
dorsiflexion over a 10-min period while his EEG was
recorded by a data acquisition system (NeXus-32, Mind
Media, Roermond-Herten, the Netherlands). The visual cue
presentation and EEG data recordings and labelings (by
epochs) were controlled using custom-written Matlab (Math-
works, Natick, MA, USA) programs.

C. Prediction Model Generation

The prediction model was generated as described in [4].
Briefly, training EEG data underwent automated artifact re-
jection to remove EEG channels with excessive electromyo-
gram (EMG) activity. This typically resulted in the exclusion
of “hatband” electrodes. The epochs of EEG corresponding
to “idling” and “dorsiflexion” states (as determined by the
labeling signal) were then transformed into the frequency
domain using Fast Fourier Transform (FFT), and their powers
were calculated over 2-Hz bins. To facilitate subsequent clas-
sification, the data underwent dimensionality reduction using
a combination of classwise principal component analysis
(CPCA) [5], [6] and approximate information discriminant
analysis (AIDA) [7]. More formally, the resulting 1D spatial-
spectral features were extracted by:

f = TAΦC(d) (1)

where f is the feature, d ∈ RB×C are single-trial spatio-
spectral EEG data (B-the number of frequency bins, C-
the number of retained EEG channels), ΦC : RB×C →
Rm is a piecewise linear mapping from the data space to
the m-dimensional CPCA-subspace, and TA : Rm → R
is an AIDA matrix transform. These techniques exploit
information-theoretic class separability measures [8], [9], and
their detailed descriptions can be found in [6], [7]. A linear
Bayesian classifier:

f? ∈

{
I, if P (I |f?) > P (D |f?)

D, otherwise
(2)

was then designed in the feature domain, where P (I |f?)
and P (D |f?) are the posterior probabilities of “idling” and
“dorsiflexion” classes, respectively. The performance of the
Bayesian classifier (2), expressed as classification accuracy,
was then assessed by performing 5 runs of a stratified 10-fold
cross-validation [10].

Finally, the optimal frequency range [FL, FH ] was found
by increasing the lower and upper frequency bounds (in
2-Hz steps) and repeating the above procedure until the
classifier performance stopped improving (details in [4]).
The parameters of the prediction model, including the op-
timal frequency range, the feature extraction mapping, and
the classifier parameters, were then saved for future real-
time EEG analysis during online BCI-FES operation. The

signal processing algorithms were implemented into the BCI
software and optimized for real-time operation [4].

D. Online Signal Analysis

During online operation of the BCI-FES system, EEG data
were acquired in 0.5-sec long, non-overlapping segments
in real time. The power spectral densities of the retained
EEG channels were calculated and used as the input for the
above signal processing algorithm. Finally, the resulting 1D
spatial-spectral features were used to calculate the posterior
probabilities of “idling” and “dorsiflexion” states.

E. Calibration

The BCI-FES system for foot dorsiflexion is a binary
state machine with “idle” and “dorsiflexion” states. The state
transition rules are dependent upon the posterior probability
averaged over the 3 most recent segments (1.5 sec) of
EEG data, P̄ (D|f?). The state transitions were governed by
comparing P̄ (D|f?) to two thresholds, TI and TD. Specif-
ically, the system transitioned from “idle” to “dorsiflexion”
(“dorsiflexion” to “idle”) state when P̄ > TD (P̄ < TI ),
respectively. Also, when TI ≤ P̄ ≤ TD, the system remained
in the current state.

The values of TI and TD were determined through a
calibration procedure. The system was set to run in the
online mode (with no FES) while the subject was asked to
alternate between idling and attempted dorsiflexion over ∼2
min. A histogram of P̄ was generated, and then used by the
experimenter to empirically determine TI and TD.

F. Online BCI-FES System Evaluation

Prior to online evaluation, the subject was fitted with a
pair of self-adhesive surface electrodes over the approxi-
mate course of the deep peroneal nerve in the right lower
leg (affected by foot drop). Electrode placement and FES
parameters were adjusted until FES-induced contraction of
the tibialis anterior (TA) muscle resulted in ∼15◦ of foot
dorsiflexion. The FES electrodes were connected to a com-
mercial FES system that was interfaced with a computer [4].
Finally, a custom built electrogoniometer [11] was applied
to the right foot dorsum to measure BCI-FES dorsiflexion
response during online evaluation.

In a single online session, the subject was tasked to
perform 10 alternating 10-sec long epochs of idling and BCI-
FES mediated dorsiflexion of the affected foot. This task
was directed by automated computer cues displayed on the
screen. Ideally, during “idle” epochs, the subject would sit
still and the BCI-FES system would provide no electrical
stimulation. During “dorsiflexion” epochs, the subject would
attempt dorsiflexion and the system would ideally detect the
associated EEG changes and respond by delivering stimu-
lation to elicit foot dorsiflexion. The BCI state transitions
throughout the online session were used to evaluate the
online performance. Finally, the subject attempted this task
for a total of 3 online sessions.

The online performance was assessed by the following cri-
teria: 1. Cross-correlation between BCI-FES decoded states
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Fig. 1. CPCA-AIDA feature extraction map at the 20–22 Hz bin. Values
close to +1 and -1 indicate brain areas of importance for classifying
EEG data into “idling” and “dorsiflexion” classes. Since feature extraction
mapping is piecewise linear, there are two maps for two classes.

Fig. 2. Histograms of the averaged posterior probabilities, P̄ (D|f?),
during “idling” (top) and “dorsiflexion” (bottom) states.

and the instructional cues; 2. The number of omissions,
defined as the failure to activate BCI-FES mediated dorsi-
flexion during a “dorsiflexion” cue; 3. The number of false
alarms, defined as the activation of the BCI-FES mediated
dorsiflexion during an “idle” cue.

III. RESULTS

A. Offline Performance

The subject underwent training data collection and analy-
sis as described Section II. The average offline classification
accuracy was 98.8% with a standard deviation (SD) of 0.4%,
with EEG features most relevant for classification being the
power in the 15–25 Hz band in the mid-central and mid-
centroparietal areas. Representative topographic distribution
of features is shown in Fig. 1.

B. Online BCI-FES Performance

Upon the calibration session, histograms of the posterior
probability P̄ (D|f?) were plotted (Fig. 2), and the threshold
values TI and TD were empirically chosen as 0.15 and 0.35,
respectively.

After correct FES electrode placement was confirmed, the
subject underwent the online BCI-FES evaluation task, and
the resulting BCI response was recorded (see Fig. 3). The
overall performances are summarized in Table I. The average
maximal cross-correlation between the computer cues and
the subject’s BCI-FES response over 3 sessions was 0.60.

Fig. 3. A representative online session: Blue blocks correspond to instruc-
tional cues to attempt dorsiflexion; Red blocks mark epochs of BCI-FES
dorsiflexion states; Black trace shows the corresponding goniometer trace,
which confirmed effective dorsiflexion each time a red block is present.
Note that small dorsiflexion movements are detected by the goniometer
immediately prior to larger displacements. These represent the subject’s
attempted, although impaired, dorsiflexion prior to the BCI-FES response.

Note that the maximal cross-correlation was found at a time
lag of 1.5–2 sec. These results are statistically significant (p
< 10−4) when compared to 10,000 Monte Carlo simulation
trials (generated with 50% chance classification accuracy),
indicating that purposeful BCI control was attained.

TABLE I

THE PERFORMANCE FOR EACH ONLINE SESSION. ρ? IS THE MAXIMAL

CROSS-CORRELATION BETWEEN THE BCI-FES RESPONSE AND THE

COMPUTER CUES AT THE CORRESPONDING TIME LAG. OMISSIONS AND

FALSE ALARMS ARE ALSO REPORTED FOR EACH SESSION.

Session ρ? Time Lag (sec) Omissions False Alarms

1 0.63 1.84 0 3

2 0.54 2.00 0 3

3 0.62 1.65 0 2

Average 0.60 1.83 0 2.67

IV. DISCUSSION

At the time of writing, this study demonstrates the first
successful BCI operation of a lower extremity FES system
by a stroke survivor with foot drop. Acquisition of purposeful
online control was immediate, and the performance was
comparable to those of able-bodied individuals [4].

The offline classification accuracy of 98.8% was superior
to those of able-bodied individuals (average: 92.5%) [4]. The
feature extraction maps demonstrated that the EEG β-band
power in the mid-central and mid-centroparietal areas was
the most informative for classifying attempted dorsiflexion
of the stroke-affected foot. They also indicate a posterior
displacement (electrode CPz) and expansion of the foot
representation area when compared to able-bodied individ-
uals (electrode Cz) [4]. This deviation from classical foot
motor representation is likely due to post-stroke cortical re-
organization and is consistent with Green et al. [12]. It is also
noteworthy that the data-driven machine learning approach
employed here was able to map the brain physiological
changes after chronic stroke. This implies that the current
technique can potentially be used as a brain mapping tool.

The subject attained purposeful online control of the
BCI-FES system on the very first session. The average ρ?

achieved by this stroke subject was 0.60 (SD = 0.05),
which was comparable to that of able-bodied individuals
(0.67, SD = 0.07, n = 5), albeit in a contralateral control
paradigm [4]. In addition, subjects in both studies had no
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omissions. However, when compared to [4], where all but
one of the able-bodied subjects had no false alarms, this
stroke subject had 2–3 false alarms in each online session.
The higher false alarm rate could be caused by post-stroke
abnormalities of EEG, particularly its increased complexity
and randomness, as documented in [13]. These phenomena
may also be responsible for the many “breaks” observed
during the “dorsiflexion” states (Fig. 3). Alternatively, dis-
continuous BCI-FES dorsiflexion may also be attributed
to neurophysiological changes induced by central fatigue
(due to repetitive motor tasks after central nervous system
injury [14]) or by peripheral fatigue (due to prolonged FES
stimulation [15]). Other factors such as the subject’s lack of
familiarity with the system and incomplete understanding of
the assigned task may also be postulated.

Despite this increased noisiness in the performance, the
stroke subject was able to immediately attain purposeful
control of the BCI-FES system following a short (∼15 min)
training/calibration session. Given that this is a single-subject
study, the feasibility of applying this system to a population
of stroke subjects as well as performance benchmarks need
to be established. If usability can be generalized to a stroke
survivor population with foot drop, the future envisioned ap-
plication will be to employ the BCI-FES dorsiflexion system
as a rehabilitation tool in a seated physiotherapy to improve
dorsiflexion. It is hypothesized that after prolonged BCI-FES
operation, Hebbian plasticity mechanisms will help improve
the connection between the post-stroke motor cortex and
spinal cord motor pools, leading to permanent improvements
in foot dorsiflexion, and ultimately, gait function.

To translate the BCI-FES dorsiflexion system into a re-
habilitative tool for stroke survivors with foot drop, several
problems must addressed. Specifically, there exists a latency
between the initiation of movement and BCI response, and
idle epochs contain a fair number of false alarms. Given that
the hypothesized mechanism of inducing neural repair via
BCI-FES operation is Hebbian plasticity, it will be favorable
to shorten this latency and reduce the number of false alarms.
Reducing the latency between the initiation of movement and
BCI-FES response will help better time-lock the activation of
the relevant post-stroke motor cortex with peripheral nerve
stimulation. Steps such as decreasing the posterior proba-
bility averaging window (currently 1.5 sec) or increasing the
refresh rate (currently 2 Hz) may ameliorate this problem, but
an increase in the number of false alarms can be expected as a
trade-off. False alarm stimulation by the device during idling
epochs can result in user frustration, early fatigue of the
TA muscle, and possibly elicit maladaptive plasticity. Hence,
eliminating false alarms during idling periods will also be
critical to facilitate a future BCI-FES based physiotherapy.
However, increased EEG entropy after stroke may render
this problem unavoidable without “locking-out” stimulation
during the idle periods. Finally, the amount of time necessary
to apply the EEG cap may prohibit the application of this
system as a physiotherapy due to a significant increase in
cost. Reducing the number of EEG channels to a subset of
useful electrodes, as suggested by Fig. 1, as well as future

use of dry electrodes are possible time- and cost-saving
measures.

V. CONCLUSION

In summary, this case report indicates that the BCI-FES
dorsiflexion system is promising for applications toward
stroke rehabilitation. The EEG signal processing techniques
employed here can facilitate online BCI operation with
minimal supervision despite altered post-stroke physiology
and cortical re-organization. The online BCI performances of
this stroke subject were comparable to those of able-bodied
individuals. However, future work must be done to test this
system across a population of individuals with foot drop due
to stroke in order to establish generalizability, set perfor-
mance benchmarks, and address the system’s limitations.
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